Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 254: 121411, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38457945

ABSTRACT

To combat the global loss of wetlands and their essential functions, the restoration and creation of wetlands is imperative. However, wetland development is challenging when soils have been in prolonged agricultural use, often resulting in a substantial nutrient legacy, especially of phosphorous (P). Inundating these soils typically leads to P mobilization, resulting in poor water quality and low biodiversity recovery. As a potential novel means to overcome this challenge, we tested whether cultivation of the floating fern Azolla filiculoides could simultaneously extract and recycle P, and provide a commercial product. Azolla has high growth rates due to the nitrogen fixing capacity of its microbiome and is capable of luxury consumption of P. Azolla cultivation may also accelerate soil P mobilization and subsequent extraction by causing surface water anoxia and the release of iron-bound P. To test this approach, we cultivated Azolla on 15 P-rich former agricultural soils in an indoor mesocosm experiment. Soils were inundated and either left unvegetated or inoculated with A. filiculoides during two 8-week cultivation periods. Biomass was harvested at different intervals (weekly/monthly/bimonthly) to investigate the effect of harvesting frequency on oxygen (O2) and nutrient dynamics. We found that Azolla attained high growth rates only on soils with high mobilization of labile P, as plant cover did not reduce surface water O2 concentrations in the first phase after inundation. This concurred with low porewater iron to P ratios (<10) and high porewater P concentrations. A. filiculoides cultivation substantially reduced surface water nutrient concentrations and extracted P at rates up to 122 kg ha-1 yr-1. We conclude that rapid P extraction by A. filiculoides cultivation is possible on soils rich in labile P, offering new perspectives for wetland rehabilitation. Additional field trials are recommended to investigate long-term feasibility, seasonal variations, and the influence of potential grazers and pathogens.


Subject(s)
Ferns , Phosphates , Phosphates/metabolism , Soil , Ferns/metabolism , Plants , Iron/metabolism
2.
Nat Commun ; 11(1): 2126, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32358532

ABSTRACT

Many inland waters exhibit complete or partial desiccation, or have vanished due to global change, exposing sediments to the atmosphere. Yet, data on carbon dioxide (CO2) emissions from these sediments are too scarce to upscale emissions for global estimates or to understand their fundamental drivers. Here, we present the results of a global survey covering 196 dry inland waters across diverse ecosystem types and climate zones. We show that their CO2 emissions share fundamental drivers and constitute a substantial fraction of the carbon cycled by inland waters. CO2 emissions were consistent across ecosystem types and climate zones, with local characteristics explaining much of the variability. Accounting for such emissions increases global estimates of carbon emissions from inland waters by 6% (~0.12 Pg C y-1). Our results indicate that emissions from dry inland waters represent a significant and likely increasing component of the inland waters carbon cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...