Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 18(10): 6292-6300, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30185051

ABSTRACT

Semiconductor nanowire (NW) lasers are attractive as integrated on-chip coherent light sources with strong potential for applications in optical communication and sensing. Realizing lasers from individual bulk-type NWs with emission tunable from the near-infrared to the telecommunications spectral region is, however, challenging and requires low-dimensional active gain regions with an adjustable band gap and quantum confinement. Here, we demonstrate lasing from GaAs-(InGaAs/AlGaAs) core-shell NWs with multiple InGaAs quantum wells (QW) and lasing wavelengths tunable from ∼0.8 to ∼1.1 µm. Our investigation emphasizes particularly the critical interplay between QW design, growth kinetics, and the control of InGaAs composition in the active region needed for effective tuning of the lasing wavelength. A low shell growth temperature and GaAs interlayers at the QW/barrier interfaces enable In molar fractions up to ∼25% without plastic strain relaxation or alloy intermixing in the QWs. Correlated scanning transmission electron microscopy, atom probe tomography, and confocal PL spectroscopy analyses illustrate the high sensitivity of the optically pumped lasing characteristics on microscopic properties, providing useful guidelines for other III-V-based NW laser systems.

2.
Nano Lett ; 16(1): 152-6, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26618638

ABSTRACT

Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NWs) fabricated using III-V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW-core region. However, lasing from NWs on silicon has not been achieved to date, due to the poor modal reflectivity at the NW-silicon interface. We demonstrate how, by inserting a tailored dielectric interlayer at the NW-Si interface, low-threshold single mode lasing can be achieved in vertical-cavity GaAs-AlGaAs core-shell NW lasers on silicon as measured at low temperature. By exploring the output characteristics along a detection direction parallel to the NW-axis, we measure very high spontaneous emission factors comparable to nanocavity lasers (ß = 0.2) and achieve ultralow threshold pump energies ≤11 pJ/pulse. Analysis of the input-output characteristics of the NW lasers and the power dependence of the lasing emission line width demonstrate the potential for high pulsation rates ≥250 GHz. Such highly efficient nanolasers grown monolithically on silicon are highly promising for the realization of chip-level optical interconnects.


Subject(s)
Nanotechnology/methods , Nanowires/chemistry , Semiconductors , Silicon/chemistry , Lasers , Light
SELECTION OF CITATIONS
SEARCH DETAIL
...