Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Elife ; 132024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856045

ABSTRACT

A key to motor control is the motor thalamus, where several inputs converge. One excitatory input originates from layer 5 of primary motor cortex (M1L5), while another arises from the deep cerebellar nuclei (Cb). M1L5 terminals distribute throughout the motor thalamus and overlap with GABAergic inputs from the basal ganglia output nuclei, the internal segment of the globus pallidus (GPi), and substantia nigra pars reticulata (SNr). In contrast, it is thought that Cb and basal ganglia inputs are segregated. Therefore, we hypothesized that one potential function of the GABAergic inputs from basal ganglia is to selectively inhibit, or gate, excitatory signals from M1L5 in the motor thalamus. Here, we tested this possibility and determined the circuit organization of mouse (both sexes) motor thalamus using an optogenetic strategy in acute slices. First, we demonstrated the presence of a feedforward transthalamic pathway from M1L5 through motor thalamus. Importantly, we discovered that GABAergic inputs from the GPi and SNr converge onto single motor thalamic cells with excitatory synapses from M1L5. Separately, we also demonstrate that, perhaps unexpectedly, GABAergic GPi and SNr inputs converge with those from the Cb. We interpret these results to indicate that a role of the basal ganglia is to gate the thalamic transmission of M1L5 and Cb information to cortex.


Subject(s)
Basal Ganglia , Cerebellum , Motor Cortex , Thalamus , Animals , Motor Cortex/physiology , Mice , Basal Ganglia/physiology , Thalamus/physiology , Male , Female , Cerebellum/physiology , Neural Pathways/physiology , Optogenetics , GABAergic Neurons/physiology , Mice, Inbred C57BL
2.
Front Synaptic Neurosci ; 16: 1384625, 2024.
Article in English | MEDLINE | ID: mdl-38798824

ABSTRACT

Palmitoylation and depalmitoylation represent dichotomic processes by which a labile posttranslational lipid modification regulates protein trafficking and degradation. The depalmitoylating enzyme, palmitoyl-protein thioesterase 1 (PPT1), is associated with the devastating pediatric neurodegenerative condition, infantile neuronal ceroid lipofuscinosis (CLN1). CLN1 is characterized by the accumulation of autofluorescent lysosomal storage material (AFSM) in neurons and robust neuroinflammation. Converging lines of evidence suggest that in addition to cellular waste accumulation, the symptomology of CLN1 corresponds with disruption of synaptic processes. Indeed, loss of Ppt1 function in cortical neurons dysregulates the synaptic incorporation of the GluA1 AMPA receptor (AMPAR) subunit during a type of synaptic plasticity called synaptic scaling. However, the mechanisms causing this aberration are unknown. Here, we used the Ppt1-/- mouse model (both sexes) to further investigate how Ppt1 regulates synaptic plasticity and how its disruption affects downstream signaling pathways. To this end, we performed a palmitoyl-proteomic screen, which provoked the discovery that Akap5 is excessively palmitoylated at Ppt1-/- synapses. Extending our previous data, in vivo induction of synaptic scaling, which is regulated by Akap5, caused an excessive upregulation of GluA1 in Ppt1-/- mice. This synaptic change was associated with exacerbated disease pathology. Furthermore, the Akap5- and inflammation-associated transcriptional regulator, nuclear factor of activated T cells (NFAT), was sensitized in Ppt1-/- cortical neurons. Suppressing the upstream regulator of NFAT activation, calcineurin, with the FDA-approved therapeutic FK506 (Tacrolimus) modestly improved neuroinflammation in Ppt1-/- mice. These findings indicate that the absence of depalmitoylation stifles synaptic protein trafficking and contributes to neuroinflammation via an Akap5-associated mechanism.

3.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559179

ABSTRACT

A key to motor control is the motor thalamus, where several inputs converge. One excitatory input originates from layer 5 of primary motor cortex (M1L5), while another arises from the deep cerebellar nuclei (Cb). M1L5 terminals distribute throughout the motor thalamus and overlap with GABAergic inputs from the basal ganglia output nuclei, the internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr). In contrast, it is thought that Cb and basal ganglia inputs are segregated. Therefore, we hypothesized that one potential function of the GABAergic inputs from basal ganglia is to selectively inhibit, or gate, excitatory signals from M1L5 in the motor thalamus. Here, we tested this possibility and determined the circuit organization of mouse (both sexes) motor thalamus using an optogenetic strategy in acute slices. First, we demonstrated the presence of a feedforward transthalamic pathway from M1L5 through motor thalamus. Importantly, we discovered that GABAergic inputs from the GPi and SNr converge onto single motor thalamic cells with excitatory synapses from M1L5 and, unexpectedly, Cb as well. We interpret these results to indicate that a role of the basal ganglia is to gate the thalamic transmission of M1L5 and Cb information to cortex.

4.
J Neurosci ; 43(49): 8317-8335, 2023 12 06.
Article in English | MEDLINE | ID: mdl-37884348

ABSTRACT

Protein palmitoylation is the only reversible post-translational lipid modification. Palmitoylation is held in delicate balance by depalmitoylation to precisely regulate protein turnover. While over 20 palmitoylation enzymes are known, depalmitoylation is conducted by fewer enzymes. Of particular interest is the lack of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) that causes the devastating pediatric neurodegenerative condition infantile neuronal ceroid lipofuscinosis (CLN1). While most of the research on Ppt1 function has centered on its role in the lysosome, recent findings demonstrated that many Ppt1 substrates are synaptic proteins, including the AMPA receptor (AMPAR) subunit GluA1. Still, the impact of Ppt1-mediated depalmitoylation on synaptic transmission and plasticity remains elusive. Thus, the goal of the present study was to use the Ppt1 -/- mouse model (both sexes) to determine whether Ppt1 regulates AMPAR-mediated synaptic transmission and plasticity, which are crucial for the maintenance of homeostatic adaptations in cortical circuits. Here, we found that basal excitatory transmission in the Ppt1 -/- visual cortex is developmentally regulated and that chemogenetic silencing of the Ppt1 -/- visual cortex excessively enhanced the synaptic expression of GluA1. Furthermore, triggering homeostatic plasticity in Ppt1 -/- primary neurons caused an exaggerated incorporation of GluA1-containing, calcium-permeable AMPARs, which correlated with increased GluA1 palmitoylation. Finally, Ca2+ imaging in awake Ppt1 -/- mice showed visual cortical neurons favor a state of synchronous firing. Collectively, our results elucidate a crucial role for Ppt1 in AMPAR trafficking and show that impeded proteostasis of palmitoylated synaptic proteins drives maladaptive homeostatic plasticity and abnormal recruitment of cortical activity in CLN1.SIGNIFICANCE STATEMENT Neuronal communication is orchestrated by the movement of receptors to and from the synaptic membrane. Protein palmitoylation is the only reversible post-translational lipid modification, a process that must be balanced precisely by depalmitoylation. The significance of depalmitoylation is evidenced by the discovery that mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (Ppt1) causes severe pediatric neurodegeneration. In this study, we found that the equilibrium provided by Ppt1-mediated depalmitoylation is critical for AMPA receptor (AMPAR)-mediated plasticity and associated homeostatic adaptations of synaptic transmission in cortical circuits. This finding complements the recent explosion of palmitoylation research by emphasizing the necessity of balanced depalmitoylation.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Receptors, AMPA , Humans , Male , Female , Child , Mice , Animals , Receptors, AMPA/physiology , Neuronal Ceroid-Lipofuscinoses/genetics , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism , Disease Models, Animal , Homeostasis , Lipids , Neuronal Plasticity
5.
Article in English | MEDLINE | ID: mdl-31555119

ABSTRACT

Protein palmitoylation is the post-translational, reversible addition of a 16-carbon fatty acid, palmitate, to proteins. Protein palmitoylation has recently garnered much attention, as it robustly modifies the localization and function of canonical signaling molecules and receptors. Protein depalmitoylation, on the other hand, is the process by which palmitic acid is removed from modified proteins and contributes, therefore, comparably to palmitoylated-protein dynamics. Palmitoylated proteins also require depalmitoylation prior to lysosomal degradation, demonstrating the significance of this process in protein sorting and turnover. Palmitoylation and depalmitoylation serve as particularly crucial regulators of protein function in neurons, where a specialized molecular architecture and cholesterol-rich membrane microdomains contribute to synaptic transmission. Three classes of depalmitoylating enzymes are currently recognized, the acyl protein thioesterases, α/ß hydrolase domain-containing 17 proteins (ABHD17s), and the palmitoyl-protein thioesterases (PPTs). However, a clear picture of depalmitoylation has not yet emerged, in part because the enzyme-substrate relationships and specific functions of depalmitoylation are only beginning to be uncovered. Further, despite the finding that loss-of-function mutations affecting palmitoyl-protein thioesterase 1 (PPT1) function cause a severe pediatric neurodegenerative disease, the role of PPT1 as a depalmitoylase has attracted relatively little attention. Understanding the role of depalmitoylation by PPT1 in neuronal function is a fertile area for ongoing basic science and translational research that may have broader therapeutic implications for neurodegeneration. Here, we will briefly introduce the rapidly growing field surrounding protein palmitoylation and depalmitoylation, then will focus on the role of PPT1 in development, health, and neurological disease.

7.
Elife ; 82019 04 04.
Article in English | MEDLINE | ID: mdl-30946007

ABSTRACT

Protein palmitoylation and depalmitoylation alter protein function. This post-translational modification is critical for synaptic transmission and plasticity. Mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) causes infantile neuronal ceroid lipofuscinosis (CLN1), a pediatric neurodegenerative disease. However, the role of protein depalmitoylation in synaptic maturation is unknown. Therefore, we studied synapse development in Ppt1-/- mouse visual cortex. We demonstrate that the developmental N-methyl-D-aspartate receptor (NMDAR) subunit switch from GluN2B to GluN2A is stagnated in Ppt1-/- mice. Correspondingly, Ppt1-/- neurons exhibit immature evoked NMDAR currents and dendritic spine morphology in vivo. Further, dissociated Ppt1-/- cultured neurons show extrasynaptic, diffuse calcium influxes and enhanced vulnerability to NMDA-induced excitotoxicity, reflecting the predominance of GluN2B-containing receptors. Remarkably, Ppt1-/- neurons demonstrate hyperpalmitoylation of GluN2B as well as Fyn kinase, which regulates surface retention of GluN2B. Thus, PPT1 plays a critical role in postsynapse maturation by facilitating the GluN2 subunit switch and proteostasis of palmitoylated proteins.


Subject(s)
Gene Expression Regulation, Developmental , Neuronal Ceroid-Lipofuscinoses/physiopathology , Receptors, N-Methyl-D-Aspartate/metabolism , Thiolester Hydrolases/metabolism , Animals , Disease Models, Animal , Lipoylation , Mice , Mice, Knockout , Protein Processing, Post-Translational , Thiolester Hydrolases/deficiency
8.
ASN Neuro ; 9(4): 1759091417719201, 2017.
Article in English | MEDLINE | ID: mdl-28707482

ABSTRACT

Cerebrovascular dysfunction is rapidly reemerging as a major process of Alzheimer's disease (AD). It is, therefore, crucial to delineate the roles of AD risk factors in cerebrovascular dysfunction. While apolipoprotein E4 ( APOE4), Amyloid-ß (Aß), and peripheral inflammation independently induce cerebrovascular damage, their collective effects remain to be elucidated. The goal of this study was to determine the interactive effect of APOE4, Aß, and chronic repeated peripheral inflammation on cerebrovascular and cognitive dysfunction in vivo. EFAD mice are a well-characterized mouse model that express human APOE3 (E3FAD) or APOE4 (E4FAD) and overproduce human Aß42 via expression of 5 Familial Alzheimer's disease (5xFAD) mutations. Here, we utilized EFAD carriers [5xFAD+/-/ APOE+/+ (EFAD+)] and noncarriers [5xFAD-/-/ APOE+/+ (EFAD-)] to compare the effects of peripheral inflammation in the presence or absence of human Aß overproduction. Low-level, chronic repeated peripheral inflammation was induced in EFAD mice via systemic administration of lipopolysaccharide (LPS; 0.5 mg/kg/wk i.p.) from 4 to 6 months of age. In E4FAD+ mice, peripheral inflammation caused cognitive deficits and lowered post-synaptic protein levels. Importantly, cerebrovascular deficits were observed in LPS-challenged E4FAD+ mice, including cerebrovascular leakiness, lower vessel coverage, and cerebral amyloid angiopathy-like Aß deposition. Thus, APOE4, Aß, and peripheral inflammation interact to induce cerebrovascular damage and cognitive deficits.


Subject(s)
Amyloid beta-Peptides/metabolism , Apolipoprotein E4/metabolism , Cerebrovascular Disorders/metabolism , Cognitive Dysfunction/metabolism , Inflammation/metabolism , Amyloid beta-Peptides/genetics , Animals , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Apolipoprotein E4/genetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Capillary Permeability/physiology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cerebrovascular Disorders/pathology , Cognitive Dysfunction/pathology , Cytokines/blood , Disease Models, Animal , Escherichia coli , Humans , Inflammation/pathology , Lipopolysaccharides , Male , Mice, Transgenic , Random Allocation , Recognition, Psychology/physiology
9.
J Vis Exp ; (124)2017 06 20.
Article in English | MEDLINE | ID: mdl-28654058

ABSTRACT

Blood-brain barrier (BBB) coverage plays a central role in the homeostasis of the central nervous system (CNS). The BBB is dynamically maintained by astrocytes, pericytes and brain endothelial cells (BECs). Here, we detail methods to assess BBB coverage using single cultures of immortalized human BECs, single cultures of primary mouse BECs, and a humanized triple culture model (BECs, astrocytes and pericytes) of the BBB. To highlight the applicability of the assays to disease states, we describe the effect of oligomeric amyloid-ß (oAß), which is an important contributor to Alzheimer's disease (AD) progression, on BBB coverage. Further, we utilize the epidermal growth factor (EGF) to illuminate the drug screening potential of the techniques. Our results show that single and triple cultured BECs form meshwork-like structures under basal conditions, and that oAß disrupts this cell meshwork formation and degenerates the preformed mesh structures, but EGF blocks this disruption. Thus, the techniques described are important for dissecting fundamental and disease-relevant processes that modulate BBB coverage.


Subject(s)
Blood-Brain Barrier/cytology , Blood-Brain Barrier/pathology , Capillaries/cytology , Capillaries/pathology , Cell Culture Techniques/methods , Alzheimer Disease/pathology , Amyloid beta-Peptides/pharmacology , Animals , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/pathology , Blood-Brain Barrier/drug effects , Capillaries/drug effects , Cells, Cultured , Coculture Techniques , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Epidermal Growth Factor/pharmacology , Humans , Mice , Pericytes/cytology , Pericytes/drug effects , Pericytes/pathology
10.
Curr Top Med Chem ; 17(6): 708-720, 2017.
Article in English | MEDLINE | ID: mdl-27320328

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by amyloid plaques, composed of amyloid-beta peptide (Aß) and neurofibrillary tangles, composed of aberrantly phosphorylated tau. APOE4 is the greatest genetic risk factor for AD, increasing risk up to 12- fold with a double allele compared to APOE3. In contrast, APOE2 reduces AD risk ~2-fold per allele. Accumulating evidence demonstrates that apolipoprotein E4 (apoE4) plays a multifactorial role in AD pathogenesis, although the exact mechanisms remain unclear. Further data support roles for apoE4 as a toxic gain of function or loss of positive function in AD, a discrepancy that has significant implications for the future of apoE-directed therapeutics. However, recent evidence repurposing retinoid X receptor (RXR) agonists, or rexinoids, for the treatment of AD demonstrates conflicting, though potentially beneficial effects in familial AD-transgenic (FAD-Tg) mouse models. Of particular note is bexarotene (Targretin®), a selective rexinoid previously utilized in cancer treatment emerging as a viable candidate for AD clinical trials. However, the mechanism of action of bexarotene and similar rexinoids remains controversial, particularly in the context of human APOE. In addition, rexinoids demonstrate distinct adverse event profiles in humans that may have greater detrimental effects in an elderly AD population. Therefore, this special issue review discusses the implications for rexinoiddirected therapeutic strategies in AD, the potential mechanistic targets, and future directions for the improvement of rexinoid-based therapies in AD.


Subject(s)
Alzheimer Disease/drug therapy , Apolipoproteins E/metabolism , Retinoids/therapeutic use , Alzheimer Disease/metabolism , Humans
11.
J Cereb Blood Flow Metab ; 36(11): 1865-1871, 2016 11.
Article in English | MEDLINE | ID: mdl-27634936

ABSTRACT

Cerebrovascular dysfunction is a critical component of Alzheimer's disease (AD) pathogenesis. Oligomeric amyloid-ß42 (oAß42) is considered a major contributor to AD progression. However, data are limited on the role of oAß42 in brain endothelial cell vessel degeneration/angiogenesis, including the interaction with angiogenic mediators. Thus, the current study determined the effect of oAß42 on angiogenesis in vitro, utilizing single brain endothelial cell cultures and triple cultures mimicking the microvascular unit (MVU: brain endothelial cells, astrocytes, and pericytes). oAß42 dose-dependently reduced angiogenesis and induced vessel disruption. Critically, epidermal growth factor prevented oAß42-induced deficits, implicating angiogenic pathways as potential therapeutics for AD.


Subject(s)
Alzheimer Disease/pathology , Amyloid beta-Peptides/toxicity , Endothelium, Vascular/drug effects , Epidermal Growth Factor/pharmacology , Microvessels/drug effects , Models, Biological , Neovascularization, Physiologic/drug effects , Peptide Fragments/toxicity , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Astrocytes/cytology , Astrocytes/drug effects , Astrocytes/metabolism , Cells, Cultured , Coculture Techniques , Dose-Response Relationship, Drug , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Humans , Microvessels/metabolism , Microvessels/pathology , Peptide Fragments/metabolism , Pericytes/cytology , Pericytes/drug effects , Pericytes/metabolism , Protein Multimerization
12.
Acta Neuropathol ; 131(5): 709-23, 2016 May.
Article in English | MEDLINE | ID: mdl-26884068

ABSTRACT

The ε4 allele of the apolipoprotein E gene (APOE4) is associated with cognitive decline during aging, is the greatest genetic risk factor for Alzheimer's disease and has links to other neurodegenerative conditions that affect cognition. Increasing evidence indicates that APOE genotypes differentially modulate the function of the cerebrovasculature (CV), with apoE and its receptors expressed by different cell types at the CV interface (astrocytes, pericytes, smooth muscle cells, brain endothelial cells). However, research on the role of apoE in CV dysfunction has not advanced as quickly as other apoE-modulated pathways. This review will assess what aspects of the CV are modulated by APOE genotypes during aging and under disease states, discuss potential mechanisms, and summarize the therapeutic significance of the topic. We propose that APOE4 induces CV dysfunction through direct signaling at the CV, and indirectly via modulation of peripheral and central pathways. Further, that APOE4 predisposes the CV to damage by, and exacerbates the effects of, additional risk factors (such as sex, hypertension, and diabetes). ApoE4-induced detrimental CV changes include reduced cerebral blood flow (CBF), modified neuron-CBF coupling, increased blood-brain barrier leakiness, cerebral amyloid angiopathy, hemorrhages and disrupted transport of nutrients and toxins. The apoE4-induced detrimental changes may be linked to pericyte migration/activation, astrocyte activation, smooth muscle cell damage, basement membrane degradation and alterations in brain endothelial cells.


Subject(s)
Apolipoproteins E/genetics , Cerebrovascular Disorders/genetics , Genetic Predisposition to Disease/genetics , Cerebrovascular Circulation/genetics , Cerebrovascular Disorders/physiopathology , Humans
13.
Mol Neurodegener ; 10: 7, 2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25871877

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) causes progressive loss of memory and cognition, exacerbated by APOE4, the greatest genetic risk factor for AD. One proposed mechanism for apolipoprotein E (apoE) effects on cognition is via NMDAR-dependent signaling. APOE genotype-specific effects on this pathway were dissected using EFAD-transgenic (Tg) mice (5xFAD mice, that over-express human amyloid-beta (Aß) via 5 familial-AD (FAD) mutations, and express human apoE), and 5xFAD/APOE-knockout (KO) mice. Previous data from EFAD-Tg mice demonstrate age-dependent (2-6 months), apoE-specific effects on the development of Aß pathology. This study tests the hypothesis that apoE4 impairs cognition via modulation of NMDAR-dependent signaling, specifically via a loss of function by comparison of E4FAD mice with 5xFAD/APOE-KO mice, E3FAD and E2FAD mice. RESULTS: Using female E2FAD, E3FAD, E4FAD and 5xFAD/APOE-KO mice aged 2-, 4-, and 6-months, the Y-maze and Morris water maze behavioral tests were combined with synaptic protein levels as markers of synaptic viability. The results demonstrate a greater age-induced deficit in cognition and reduction in PSD95, drebrin and NMDAR subunits in the E4FAD and 5xFAD/APOE-KO mice compared with E2FAD and E3FAD mice, consistent with an apoE4 loss of function. Interestingly, for NMDAR-mediated signaling, the levels of p-CaMK-II followed this same apoE-specific pattern as cognition, while the levels of p-CREB and BDNF demonstrate an apoE4 toxic gain of function: E2FAD > E3FAD > 5xFAD/APOE-KO > E4FAD. CONCLUSION: These findings suggest that compared with E2FAD and E3FAD, E4FAD and 5xFAD/APOE-KO mice exhibit enhanced age-induced reductions in cognition and key synaptic proteins via down-regulation of an NMDAR signaling pathway, consistent with an apoE4 loss of function. However, levels of p-CREB and BDNF, signaling factors common to multiple pathways, suggest a gain of toxic function. Publications in this field present contradictory results as to whether APOE4 imparts a loss or gain of function. As with the results reported herein, the overall effect of APOE4 on a given CNS-specific measure will be the product of multiple overlapping mechanisms. Thus, caution remains critical in determining whether APOE gene inactivation or therapies that correct the loss of positive function related to apoE4, are the appropriate therapeutic response.


Subject(s)
Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Cognition/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction/genetics , Aging , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Down-Regulation , Memory/physiology , Mice, Knockout , Mutation/genetics , Signal Transduction/physiology
14.
J Neurochem ; 133(4): 465-88, 2015 May.
Article in English | MEDLINE | ID: mdl-25689586

ABSTRACT

Chronic glial activation and neuroinflammation induced by the amyloid-ß peptide (Aß) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD-genetic risk factor; increasing risk up to 12-fold compared to APOE3, with APOE4-specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aß-induced neuroinflammation, and discussion of future research directions. The complexity of chronic neuroinflammation, including multiple detrimental and beneficial effects occurring in a temporal and cell-specific manner, has resulted in conflicting functional data for virtually every inflammatory mediator. Defining a neuroinflammatory phenotype (NIP) is one way to address this issue, focusing on profiling the changes in inflammatory mediator expression during disease progression. Although many studies have shown that APOE4 induces a detrimental NIP in peripheral inflammation and Aß-independent neuroinflammation, data for APOE-modulated Aß-induced neuroinflammation are surprisingly limited. We present data supporting the hypothesis that impaired apoE4 function modulates Aß-induced effects on inflammatory receptor signaling, including amplification of detrimental (toll-like receptor 4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways. To ultimately develop APOE genotype-specific therapeutics, it is critical that future studies define the dynamic NIP profile and pathways that underlie APOE-modulated chronic neuroinflammation. In this editorial review, we present data supporting the hypothesis that impaired apoE4 function modulates Aß-induced effects on inflammatory receptor signaling, including amplification of detrimental (TLR4-p38α) and suppression of beneficial (IL-4R-nuclear receptor) pathways, resulting in an adverse NIP that causes neuronal dysfunction. NIP, Neuroinflammatory phenotype; P.I., pro-inflammatory; A.I., anti-inflammatory.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/toxicity , Apolipoproteins E/physiology , Inflammation/etiology , Alzheimer Disease/complications , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Humans , Inflammation/drug therapy , Neuroglia/drug effects , Neuroglia/metabolism , Signal Transduction/drug effects
15.
J Biol Chem ; 289(44): 30538-30555, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25217640

ABSTRACT

Previous data demonstrate that bexarotene (Bex), retinoid X receptor (RXR) agonist, reduces soluble and insoluble amyloid-ß (Aß) in Alzheimer disease (AD)-transgenic mice either by increasing the levels of mouse apolipoprotein E (apoE) or increasing ABCA1/ABCG1-induced apoE lipoprotein association/lipidation. However, although the mechanism of action of RXR agonists remains unclear, a major concern for their use is human (h)-APOE4, the greatest AD genetic risk factor. If APOE4 imparts a toxic gain-of-function, then increasing apoE4 may increase soluble Aß, likely the proximal AD neurotoxin. If the APOE4 loss-of-function is lipidation of apoE4, then induction of ABCA1/ABCG1 may be beneficial. In novel EFAD-Tg mice (overexpressing h-Aß42 with h-APOE), levels of soluble Aß (Aß42 and oligomeric Aß) are highest in E4FAD hippocampus (HP) > E3FAD-HP > E4FAD cortex (CX) > E3FAD-CX, whereas levels of lipoprotein-associated/lipidated apoE have the opposite pattern (6 months). In E4FAD-HP, short-term RXR agonist treatment (Bex or LG100268; 5.75-6 months) increased ABCA1, apoE4 lipoprotein-association/lipidation, and apoE4/Aß complex, decreased soluble Aß, and increased PSD95. In addition, hydrogel delivery, which mimics low sustained release, was equally effective as gavage for Bex and LG100268. RXR agonists induced no beneficial effects in the E4FAD-HP in a prevention protocol (5-6 months) and actually increased soluble Aß levels in E3FAD-CX and E4FAD-CX with the short-term protocol, possibly the result of systemic hepatomegaly. Thus, RXR agonists address the loss-of-function associated with APOE4 and exacerbated by Aß pathology, i.e. low levels of apoE4 lipoprotein association/lipidation. Further studies are vital to address whether RXR agonists are an APOE4-specific AD therapeutic and the systemic side effects that limit translational application.


Subject(s)
Amyloid beta-Peptides/metabolism , Apolipoproteins E/genetics , Nicotinic Acids/administration & dosage , Peptide Fragments/metabolism , Retinoid X Receptors/agonists , Tetrahydronaphthalenes/administration & dosage , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1 , ATP-Binding Cassette Transporters/metabolism , Administration, Oral , Alzheimer Disease/drug therapy , Animals , Bexarotene , Disks Large Homolog 4 Protein , Drug Evaluation, Preclinical , Genotype , Guanylate Kinases/metabolism , Humans , Lipoproteins/metabolism , Liver/drug effects , Liver/pathology , Male , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Nicotinic Acids/adverse effects , Nicotinic Acids/pharmacokinetics , Organ Size/drug effects , Retinoid X Receptors/metabolism , Solubility , Tetrahydronaphthalenes/adverse effects , Tetrahydronaphthalenes/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...