Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Eng Au ; 2(4): 320-332, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35996395

ABSTRACT

Cellulose pyrolysis is reportedly influenced by factors such as sample size, crystallinity, or different morphologies. However, there seems to be a lack of understanding of the mechanistic details that explain the observed differences in the pyrolysis yields. This study aims to investigate the influence of particle size and crystallinity of cellulose by performing pyrolysis reactions at temperatures of 673-873 K using a micropyrolyzer apparatus coupled to a GC × GC-FID/TOF-MS and a customized GC-TCD. Over 60 product species have been identified and quantified for the first time, including water. Crystalline cellulose with an average particle size of 30-50 × 10-6 m produced 50-60 wt % levoglucosan. Predominantly amorphous cellulose with an average particle size of 10-20 × 10-6 m resulted in remarkably low yields (10-15 wt %) of levoglucosan complemented by higher yields of water and glycolaldehyde. A detailed kinetic model for cellulose pyrolysis was used to obtain mechanistic insights into the different pyrolysis product compositions. The kinetics of the mid-chain dehydration and fragmentation reactions strongly influence the total yields of low-molecular weight products (LMWPs) and are affected by cellulose chain arrangement. Levoglucosan yields are very sensitive to the activation of parallel cellulose decomposition reactions. This can be attributed to the mid-chain reactions forming smaller chains with the levoglucosan ends, which remain in the solid phase and react further to form LMWPs. Direct quantification of water helped to improve the description of the dehydration, giving further indications of the dominant role of mid-chain reaction pathways in amorphous cellulose pyrolysis.

2.
ACS Mater Au ; 2(2): 163-175, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-36855771

ABSTRACT

Control of the spatial proximity of Brønsted acid sites within the zeolite framework can result in materials with properties that are distinct from materials synthesized through conventional crystallization methods or available from commercial sources. Recent experimental evidence has shown that turnover rates of different acid-catalyzed reactions increase with the fraction of proximal sites in chabazite (CHA) zeolites. The catalytic conversion of oxygenates is an important research area, and the dehydration of methanol to dimethyl ether (DME) is a well-studied reaction as part of methanol-to-olefin chemistry catalyzed by solid acids. Published experimental data have shown that DME formation rates (per acid site) increase systematically with the fraction of proximal acid sites in the six-membered ring of CHA. Here, we probe the effect of acid site proximity in CHA on methanol dehydration rates using electronic structure calculations and microkinetic modeling to identify the primary causes of this chemistry and their relationship to the local structure of the catalyst at the nanoscale. We report a density functional theory-parametrized microkinetic model of methanol dehydration to DME, catalyzed by acidic CHA zeolite with direct comparison to experimental data. Effects of proximal acid sites on reaction rates were captured quantitatively for a range of operating conditions and catalyst compositions, with a focus on total paired acid site concentration and reactant clustering to form higher nuclearity complexes. Next-nearest neighbor paired acid sites were identified as promoting the formation of methanol trimer clusters rather than the inhibiting tetramer or pentamer clusters, resulting in large increases in the rate for DME production due to the lower energy barriers present in the concerted methanol trimer reaction pathway. The model framework developed in this study can be extended to other zeolite materials and reaction chemistries toward the goal of rational design and development of next-generation catalytic materials and chemical processes.

3.
J Phys Chem B ; 125(26): 7199-7212, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34165314

ABSTRACT

Porous aluminosilicates such as zeolites are ubiquitous catalysts for the production of high-value and industrially relevant commodity chemicals, including the conversion of hydrocarbons, amines, alcohols, and others. Bimolecular reactions are an important subclass of reactions that can occur on Brønsted acid sites of a zeolite catalyst. Kinetic modeling of these systems at the process scale requires the interaction energetics of reactants and the active sites to be described accurately. It is generally known that adsorption is a coverage-dependent phenomenon, with lower heats of adsorption observed for molecules at higher coverage. However, few studies have systematically investigated the coadsorption of molecules on a single active site, specifically focusing on the strength of interaction of the second adsorbate after the initial adsorption step. In this work, we quantify the unimolecular and bimolecular adsorption energies of varying adsorbates, including paraffins, olefins, alcohols, amines, and noncondensible gases in the acidic and siliceous ZSM-5 frameworks. As a special case, olefin adsorption was examined for physisorption and chemisorption regimes, characterized by π-complex, framework alkoxide and carbenium ion adsorption, respectively. The effects of functional groups and molecular size were quantified, and correlations that relate the adsorption of the second adsorbate identity to that of the first adsorbate are provided.


Subject(s)
Zeolites , Adsorption , Alcohols , Catalysis , Gases
4.
Nanoscale ; 10(8): 4004-4009, 2018 Feb 22.
Article in English | MEDLINE | ID: mdl-29424847

ABSTRACT

Rational design of catalysts for selective conversion of alcohols to olefins is key since product selectivity remains an issue due to competing etherification reactions. Using first principles calculations and chemical rules, we designed novel metal-oxide-protected metal nanoclusters (M13X4O12, with M = Cu, Ag, and Au and X = Al, Ga, and In) exhibiting strong Lewis acid sites on their surface, active for the selective formation of olefins from alcohols. These symmetrical nanocatalysts, due to their curvature, show unfavorable etherification chemistries, while favoring the olefin production. Furthermore, we determined that water removal and regeneration of the nanocatalysts is more feasible compared to the equivalent strong acid sites on solid acids used for alcohol dehydration. Our results demonstrate an exceptional stability of these new nanostructures with the most energetically favorable being Cu-based. Thus, the high selectivity and stability of these in-silico-predicted novel nanoclusters (e.g. Cu13Al4O12) make them attractive catalysts for the selective dehydration of alcohols to olefins.

5.
Angew Chem Int Ed Engl ; 55(42): 13061-13066, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27490584

ABSTRACT

We report a novel catalytic conversion of biomass-derived furans and alcohols to aromatics over zeolite catalysts. Aromatics are formed via Diels-Alder cycloaddition with ethylene, which is produced in situ from ethanol dehydration. The use of liquid ethanol instead of gaseous ethylene, as the source of dienophile in this one-pot synthesis, makes the aromatics production much simpler and renewable, circumventing the use of ethylene at high pressure. More importantly, both our experiments and theoretical studies demonstrate that the use of ethanol instead of ethylene, results in significantly higher rates and higher selectivity to aromatics, due to lower activation barriers over the solid acid sites. Synchrotron-diffraction experiments and proton-affinity calculations clearly suggest that a preferred protonation of ethanol over the furan is a key step facilitating the Diels-Alder and dehydration reactions in the acid sites of the zeolite.

SELECTION OF CITATIONS
SEARCH DETAIL
...