Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 10(3): 1308-1321, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29296980

ABSTRACT

We have produced an innovative, theranostic material based on FePt/SiO2/Au hybrid nanoparticles (NPs) for both, photo-thermal therapy and magnetic resonance imaging (MRI). Furthermore, a new synthesis approach, i.e., Au double seeding, for the preparation of Au nanoshells around the FePt/SiO2 cores, is proposed. The photo-thermal and the MRI response were first demonstrated on an aqueous suspension of hybrid FePt/SiO2/Au NPs. The cytotoxicity together with the internalization mechanism and the intracellular fate of the hybrid NPs were evaluated in vitro on a normal (NPU) and a half-differentiated cancerous cell line (RT4). The control samples as well as the normal cell line incubated with the NPs showed no significant temperature increase during the in vitro photo-thermal treatment (ΔT < 0.8 °C) and thus the cell viability remained high (∼90%). In contrast, due to the high NP uptake by the cancerous RT4 cell line, significant heating of the sample was observed (ΔT = 4 °C) and, consequently, after laser irradiation the cell viability dropped significantly to ∼60%. These results further confirm that the hybrid FePt/SiO2/Au NPs developed in the scope of this work were not only efficient but also highly selective photo-thermal agents. Furthermore, the improvement in the contrast and the easier distinction between the healthy and the cancerous tissues were clearly demonstrated with in vitro MRI experiments, proving that hybrid NPs have an excellent potential to be used as contrast agents.


Subject(s)
Magnetic Resonance Imaging , Metal Nanoparticles , Silicon Dioxide , Theranostic Nanomedicine , Animals , Cell Line, Tumor , Cell Survival , Gold , Hot Temperature , Humans , Iron , Platinum , Swine
2.
RSC Adv ; 8(26): 14694-14704, 2018 Apr 17.
Article in English | MEDLINE | ID: mdl-35540786

ABSTRACT

A detailed magnetic study of separated Fe-Pt NPs and Fe-Pt clusters was performed to predict their optimal size and morphology for the maximum saturation magnetization, a factor that is known to influence the performance of a magnetic-resonance-imaging (MRI) contrast agent. Excellent stability and biocompatibility of the nanoparticle suspension was achieved using a novel coating based on hydrocaffeic acid (HCA), which was confirmed with a detailed Fourier-transform infrared spectroscopy (FTIR) study. An in vitro study on a human-bladder papillary urothelial neoplasm RT4 cell line confirmed that HCA-Fe-Pt nanoparticles showed no cytotoxicity, even at a very high concentration (550 µg Fe-Pt per mL), with no delayed cytotoxic effect being detected. This indicates that the HCA coating provides excellent biocompatibility of the nanoparticles, which is a prerequisite for the material to be used as a safe contrast agent for MRI. The cellular uptake and internalization mechanism were studied using ICP-MS and TEM analyses. Furthermore, it was shown that even a very low concentration of Fe-Pt nanoparticles (<10 µg mL-1) in the cells is enough to decrease the T 2 relaxation times by 70%. In terms of the MRI imaging, this means a large improvement in the contrast, even at a low nanoparticle concentration and an easier visualization of the tissues containing nanoparticles, proving that HCA-coated Fe-Pt nanoparticles have the potential to be used as an efficient and safe MRI contrast agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...