Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Transplant ; 19(1): 110-122, 2019 01.
Article in English | MEDLINE | ID: mdl-29786954

ABSTRACT

Extending kidney donor criteria, including donation after circulatory death (DCD), has resulted in increased rates of delayed graft function (DGF) and primary nonfunction. Here, we used Nuclear Magnetic Resonance (NMR) spectroscopy to analyze the urinary metabolome of DCD transplant recipients at multiple time points (days 10, 42, 180, and 360 after transplantation). The aim was to identify markers that predict prolonged duration of functional DGF (fDGF). Forty-seven metabolites were quantified and their levels were evaluated in relation to fDGF. Samples obtained at day 10 had a different profile than samples obtained at the other time points. Furthermore, at day 10 there was a statistically significant increase in eight metabolites and a decrease in six metabolites in the group with fDGF (N = 53) vis-à-vis the group without fDGF (N = 22). In those with prolonged fDGF (≥21 days) (N = 17) urine lactate was significantly higher and pyroglutamate lower than in those with limited fDGF (<21 days) (N = 36). In order to further distinguish prolonged fDGF from limited fDGF, the ratios of all metabolites were analyzed. In a logistic regression analysis, the sum of branched-chain amino acids (BCAAs) over pyroglutamate and lactate over fumarate, predicted prolonged fDGF with an AUC of 0.85. In conclusion, kidney transplant recipients with fDGF can be identified based on their altered urinary metabolome. Furthermore, two ratios of urinary metabolites, lactate/fumarate and BCAAs/pyroglutamate, adequately predict prolonged duration of fDGF.


Subject(s)
Delayed Graft Function/urine , Kidney Failure, Chronic/surgery , Kidney Transplantation , Adult , Aged , Amino Acids, Branched-Chain/urine , Area Under Curve , Biomarkers/urine , Female , Fumarates/urine , Glomerular Filtration Rate , Graft Survival , Humans , Kidney Failure, Chronic/urine , Lactic Acid/urine , Magnetic Resonance Spectroscopy , Male , Middle Aged , Pyrrolidonecarboxylic Acid/metabolism , Pyrrolidonecarboxylic Acid/urine , ROC Curve , Time Factors
2.
Am J Transplant ; 16(9): 2741-6, 2016 09.
Article in English | MEDLINE | ID: mdl-26999803

ABSTRACT

A recent seminal paper implicated ischemia-related succinate accumulation followed by succinate-driven reactive oxygen species formation as a key driver of ischemia-reperfusion injury. Although the data show that the mechanism is universal for all organs tested (kidney, liver, heart, and brain), a remaining question is to what extent these observations in mice translate to humans. We showed in this study that succinate accumulation is not a universal event during ischemia and does not occur during renal graft procurement; in fact, tissue succinate content progressively decreased with increasing graft ischemia time (p < 0.007). Contrasting responses were also found with respect to mitochondrial susceptibility toward ischemia and reperfusion, with rodent mitochondria robustly resistant toward warm ischemia but human and pig mitochondria highly susceptible to warm ischemia (p < 0.05). These observations suggest that succinate-driven reactive oxygen formation does not occur in the context of kidney transplantation. Moreover, absent allantoin release from the reperfused grafts suggests minimal oxidative stress during clinical reperfusion.


Subject(s)
Disease Models, Animal , Mitochondria/metabolism , Oxidative Stress , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Succinic Acid/metabolism , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/pathology , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...