Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(13): 10234-10242, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38497315

ABSTRACT

In this work IR spectral characteristics of PO groups are used to evaluate the strength of OHO hydrogen bonds. Three phosphine oxides: triphenylphosphine oxide, tributylphosphine oxide and hexamethylphosphoramide are investigated as proton acceptors. The results of the experimental IR study and DFT calculation of 30 complexes formed by phosphine oxides with various substituted phenols or CF3CH2OH in CCl4 solution at room temperature are reported. We show that the PO vibrational frequency changes non-linearly upon hydrogen bond formation and strengthening and that the shift of the PO band could be used for the estimation of hydrogen bond strength in complexes with phosphine oxides. The accuracy of these estimations and the influence of solvation effects on the main characteristics of complexes are discussed.

2.
Phys Chem Chem Phys ; 24(11): 7121-7133, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35262111

ABSTRACT

In this work we evaluate the possibility of using the NMR and IR spectral properties of the PO group to estimate the geometry and strength of hydrogen bonds which it forms with OH-, NH- and CH-acids. The results of the DFT study of 70 hydrogen-bonded 1 : 1 complexes of a model trimethylphosphine oxide, Me3PO, with various proton donors in the gas phase and in aprotic medium (modelled as a polarizable continuum) are presented. Four types of hydrogen bonds with the general formula Me3PO⋯H-A were considered, where the A atom is O, C, and N (neutral or cationic acids). Within the selected set of complexes the hydrogen bond energy varies over a wide range (ca. 0-85 kJ mol-1). We show that it is possible to use simple correlations to estimate the energy and geometry of OHO, NHO and CHO hydrogen bonds from the changes of isotropic 31P NMR chemical shifts and harmonic PO stretching vibration frequencies upon complexation. Such correlations also could be used to estimate the proton-donating ability (and Brønsted acidity; pKa) of OH acids.

3.
Molecules ; 25(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287255

ABSTRACT

In this work, the nuclear magnetic resonance (NMR) and IR spectroscopic markers of the complexation between 5-fluorouracil (5-FU) and ß-cyclodextrin (ß-CD) in solid state and in aqueous solution are investigated. In the attenuated total reflectance(ATR) spectra of 5-FU/ß-CD products obtained by physical mixing, kneading and co-precipitation, we have identified the two most promising marker bands that could be used to detect complex formations: the C=O and C-F stretching bands of 5-FU that experience a blue shift by ca. 8 and 2 cm-1 upon complexation. The aqueous solutions were studied by NMR spectroscopy. As routine NMR spectra did not show any signs of complexation, we have analyzed the diffusion attenuation of spin-echo signals and the dependence of the population factor of slowly diffusing components on the diffusion time (diffusion NMR of pulsed-field gradient (PFG) NMR). The analysis has revealed that, at each moment, ~60% of 5-FU molecules form a complex with ß-CD and its lifetime is ca. 13.5 ms. It is likely to be an inclusion complex, judging from the independence of the diffusion coefficient of ß-CD on complexation. The obtained results could be important for future attempts of finding better methods of targeted anticancer drug delivery.


Subject(s)
Fluorouracil/chemistry , beta-Cyclodextrins/chemistry , Antineoplastic Agents/chemistry , Diffusion , Drug Delivery Systems/methods , Magnetic Resonance Spectroscopy/methods , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...