Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Neuroinflammation ; 13(1): 269, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27733178

ABSTRACT

BACKGROUND: Dimethyl fumarate (DMF), working via its metabolite monomethylfumarate (MMF), acts as a potent antioxidant and immunomodulator in animal models of neurologic disease and in patients with multiple sclerosis. These properties and their translational potential led us to investigate whether DMF/MMF could also protect at-risk and/or dying neurons in models of ischemic stroke in vitro and in vivo. Although the antioxidant effects have been partially addressed, the benefits of DMF immunomodulation after ischemic stroke still need to be explored. METHODS: In vitro neuronal culture with oxygen-glucose deprivation and rats with middle cerebral artery occlusion were subjected to DMF/MMF treatment. Live/dead cell counting and LDH assay, as well as behavioral deficits, plasma cytokine assay, western blots, real-time PCR (Q-PCR) and immunofluorescence staining, were used to evaluate the mechanisms and neurological outcomes. RESULTS: We found that MMF significantly rescued cortical neurons from oxygen-glucose deprivation (OGD) in culture and suppressed pro-inflammatory cytokines produced by primary mixed neuron/glia cultures subjected to OGD. In rats, DMF treatment significantly decreased infarction volume by nearly 40 % and significantly improved neurobehavioral deficits after middle cerebral artery occlusion (MCAO). In the acute early phase (72 h after MCAO), DMF induced the expression of transcription factor Nrf2 and its downstream mediator HO-1, important for the protection of infarcted cells against oxidative stress. In addition to its antioxidant role, DMF also acted as a potent immunomodulator, reducing the infiltration of neutrophils and T cells and the number of activated microglia/macrophages in the infarct region by more than 50 % by 7-14 days after MCAO. Concomitantly, the levels of potentially harmful pro-inflammatory cytokines were greatly reduced in the plasma and brain and in OGD neuron/glia cultures. CONCLUSIONS: We conclude that DMF is neuroprotective in experimental stroke because of its potent immunomodulatory and antioxidant effects and thus may be useful as a novel therapeutic agent to treat stroke in patients.


Subject(s)
Dimethyl Fumarate/therapeutic use , Immunity, Cellular/drug effects , Inflammation Mediators/antagonists & inhibitors , Neurons/drug effects , Recovery of Function/drug effects , Stroke/drug therapy , Animals , Cells, Cultured , Dimethyl Fumarate/pharmacology , Immunity, Cellular/physiology , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Male , Neurons/physiology , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology , Stroke/immunology , Stroke/metabolism
2.
Adv Exp Med Biol ; 860: 187-93, 2015.
Article in English | MEDLINE | ID: mdl-26303480

ABSTRACT

The respiratory control system is not fully developed in newborn, and data suggest that adequate nutrition is important for the development of the respiratory control system. Infants need to be fed every 2-4 h to maintain appropriate energy levels, but a skip of feeding can occur due to social economical reasons or mild sickness of infants. Here, we asked questions if a short-term fasting (1) alters carotid body (CB) chemoreceptor activity and integrated function of the respiratory control system; (2) causes epigenetic modification within the respiratory control system. Mouse pups (

Subject(s)
Carotid Body/physiology , Epigenesis, Genetic , Fasting/physiology , Respiration , Animals , Animals, Newborn , Mice
3.
PLoS One ; 9(12): e113151, 2014.
Article in English | MEDLINE | ID: mdl-25462571

ABSTRACT

Parkinson disease (PD) is the second leading neurodegenerative disease in the US. As there is no known cause or cure for PD, researchers continue to investigate disease mechanisms and potential new therapies in cell culture and in animal models of PD. In PD, one of the most profoundly affected neuronal populations is the tyrosine hydroxylase (TH)-expressing dopaminergic (DA) neurons of the substantia nigra pars compacta (SNpc). These DA-producing neurons undergo degeneration while neighboring DA-producing cells of the ventral tegmental area (VTA) are largely spared. To aid in these studies, The Michael J. Fox Foundation (MJFF) partnered with Thomas Jefferson University and Taconic Inc. to generate new transgenic rat lines carrying the human TH gene promoter driving EGFP using a 11 kb construct used previously to create a hTH-GFP mouse reporter line. Of the five rat founder lines that were generated, three exhibited high level specific GFP fluorescence in DA brain structures (ie. SN, VTA, striatum, olfactory bulb, hypothalamus). As with the hTH-GFP mouse, none of the rat lines exhibit reporter expression in adrenergic structures like the adrenal gland. Line 12141, with its high levels of GFP in adult DA brain structures and minimal ectopic GFP expression in non-DA structures, was characterized in detail. We show here that this line allows for anatomical visualization and microdissection of the rat midbrain into SNpc and/or VTA, enabling detailed analysis of midbrain DA neurons and axonal projections after toxin treatment in vivo. Moreover, we further show that embryonic SNpc and/or VTA neurons, enriched by microdissection or FACS, can be used in culture or transplant studies of PD. Thus, the hTH-GFP reporter rat should be a valuable tool for Parkinson's disease research.


Subject(s)
Dopamine/metabolism , Green Fluorescent Proteins/genetics , Parkinson Disease/genetics , Pars Compacta/metabolism , Animals , Animals, Genetically Modified , Axons/metabolism , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Dopamine/genetics , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Gene Expression Regulation , Green Fluorescent Proteins/biosynthesis , Humans , Mice , Olfactory Bulb/metabolism , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Promoter Regions, Genetic/genetics , Rats , Tyrosine 3-Monooxygenase/genetics
4.
Respir Physiol Neurobiol ; 185(1): 120-31, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22902305

ABSTRACT

Breathing is a complex function that is dynamic, responsive, automatic and often unstable during early development. The carotid body senses dynamic changes in arterial oxygen and carbon dioxide tension and reflexly alters ventilation and plays an essential role in terminating apnea. The carotid body contributes 10-40% to baseline ventilation in newborns and has the greatest influence on breathing in premature infants who characteristically have unstable breathing leading to apnea of prematurity. In this review, we will discuss how both excessive and minimal contributions from the carotid body destabilizes breathing in premature infants and how exposures to hypoxia or infection can lead to changes in the sensitivity of the carotid body. We propose that inflammation/infection during a critical period of carotid body development causes acute and chronic changes in the carotid body contributing to a protracted course of intractable and severe apnea known to occur in a subset of premature infants.


Subject(s)
Apnea/physiopathology , Carotid Body/physiopathology , Infant, Premature, Diseases/physiopathology , Inflammation/physiopathology , Animals , Apnea/etiology , Carotid Body/growth & development , Carotid Body/pathology , Humans , Hypoxia/physiopathology , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/pathology , Inflammation/complications
5.
Respir Physiol Neurobiol ; 185(1): 20-9, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22634368

ABSTRACT

Mice are the most suitable species for understanding genetic aspects of postnatal developments of the carotid body due to the availability of many inbred strains and knockout mice. Our study has shown that the carotid body grows differentially in different mouse strains, indicating the involvement of genes. However, the small size hampers investigating functional development of the carotid body. Hypoxic and/or hyperoxic ventilatory responses have been investigated in newborn mice, but these responses are indirect assessment of the carotid body function. Therefore, we need to develop techniques of measuring carotid chemoreceptor neural activity from young mice. Many studies have taken advantage of the knockout mice to understand chemoreceptor function of the carotid body, but they are not always suitable for addressing postnatal development of the carotid body due to lethality during perinatal periods. Various inbred strains with well-designed experiments will provide useful information regarding genetic mechanisms of the postnatal carotid chemoreceptor development. Also, targeted gene deletion is a critical approach.


Subject(s)
Carotid Body/growth & development , Carotid Body/physiology , Animals , Chemoreceptor Cells/cytology , Chemoreceptor Cells/physiology , Mice , Mice, Knockout
7.
Adv Exp Med Biol ; 758: 279-85, 2012.
Article in English | MEDLINE | ID: mdl-23080173

ABSTRACT

The purposes of this study were to: (1) establish an effective method to measure the release of ATP from the mouse carotid body (CB) and (2) determine the release of ATP from the CB of the DBA/2 J (high hypoxic responder) and A/J (low hypoxic responder) mouse in response to hypoxia and hypercapnia. An incubation chamber was constructed utilizing a Costar® Spin-X Centrifuge Tube Filter. The filter was coated with low melting point agarose to hold 4 CBs or 4 superior cervical ganglia (SCG). Hypoxia did not increase ATP release from the CB of either strain. ATP increased in response to a normoxic/hypercapnic challenge in the DBA/2 J's CB but not in the A/J's CB. ATP release from the SCG was affected by neither hypoxia nor hypercapnia in both strains. Thus, we have concluded: (1) we successfully established a chamber system to measure ATP released from the mouse CB; (2) ATP may not be an excitatory neurotransmitter in the CB of these mice under hypoxia; (3) ATP may be a neurotransmitter in the CB of the DBA/2 J mouse strain during hypercapnia.


Subject(s)
Adenosine Triphosphate/metabolism , Carotid Body/metabolism , Hypercapnia/metabolism , Animals , Male , Mice , Mice, Inbred DBA , Superior Cervical Ganglion/metabolism
8.
J Physiol ; 590(16): 3807-19, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22615433

ABSTRACT

The carotid body (CB) is the key oxygen sensing organ. While the expression of CB specific genes is relatively well studied in animals, corresponding data for the human CB are missing. In this study we used five surgically removed human CBs to characterize the CB transcriptome with microarray and PCR analyses, and compared the results with mice data. In silico approaches demonstrated a unique gene expression profile of the human and mouse CB transcriptomes and an unexpected upregulation of both human and mouse CB genes involved in the inflammatory response compared to brain and adrenal gland data. Human CBs express most of the genes previously proposed to be involved in oxygen sensing and signalling based on animal studies, including NOX2, AMPK, CSE and oxygen sensitive K+ channels. In the TASK subfamily of K+ channels, TASK-1 is expressed in human CBs, while TASK-3 and TASK-5 are absent, although we demonstrated both TASK-1 and TASK-3 in one of the mouse reference strains. Maxi-K was expressed exclusively as the spliced variant ZERO in the human CB. In summary, the human CB transcriptome shares important features with the mouse CB, but also differs significantly in the expression of a number of CB chemosensory genes. This study provides key information for future functional investigations on the human carotid body.


Subject(s)
Carotid Body/metabolism , Inflammation/metabolism , Oxygen/metabolism , Transcriptome/physiology , Adult , Aged , Animals , Female , Gene Expression Regulation/physiology , Humans , Male , Mice , Middle Aged , Polymerase Chain Reaction , Potassium Channels/metabolism , Protein Array Analysis , Signal Transduction
9.
J Appl Physiol (1985) ; 112(3): 490-500, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22074716

ABSTRACT

We have previously shown that the adult DBA/2J and A/J strains of mice differ in carotid body volume and morphology. The question has arisen whether these differences develop during the prenatal or postnatal period. Investigating morphological development of the carotid body and contributing genes in these mice can provide further understanding of the appropriate formation of the carotid body. We examined the carotid body of these mice from 1 day to 4 wk old for differences in volume, morphology, and gene expression of Gdnf family, Dlx2, Msx2, and Phox2b. The two strains showed divergent morphology starting at 1 wk old. The volume of the carotid body increased from 1 wk up to 2 wk old to the level of 4 wk old in the DBA/2J mice but not in the A/J mice. This corresponds with immunoreactivity of LC3, an autophagy marker, in A/J tissues at 10 days and 2 wk. The differences in gene expression were examined at 1 wk, 10 days, and 2 wk old, because divergent growth occurred during this period. The DBA/2J's carotid body at 1 wk old showed a greater expression of Msx2 than the A/J's carotid body. No other candidate genes showed consistent differences between the ages and strains. The difference was not seen in sympathetic cervical ganglia of 1 wk old, suggesting that the difference is carotid body specific. The current study indicates the critical postnatal period for developing distinctive morphology of the carotid body in these mice. Further studies are required to further elucidate a role of Msx2 and other uninvestigated genes.


Subject(s)
Carotid Body/growth & development , Carotid Body/metabolism , Animals , Ganglia, Sympathetic/metabolism , Gene Expression/genetics , Glial Cell Line-Derived Neurotrophic Factors/genetics , Homeodomain Proteins/genetics , Male , Mice , Mice, Inbred DBA , Microtubule-Associated Proteins/metabolism , Superior Cervical Ganglion/metabolism , Transcription Factors/genetics
10.
Front Cell Neurosci ; 5: 19, 2011.
Article in English | MEDLINE | ID: mdl-22013411

ABSTRACT

The carotid body (CB) is a primary chemosensory organ for arterial hypoxia. Inhibition of K channels in chemosensory glomus cells (GCs) are considered to be responsible for hypoxic chemoreception and/or chemotransduction of the CB. Hypoxic sensitivity of large-conductance calcium-activated K (BK) channels has been established in the rat CB. Our previous work has shown the BK channel ß2 subunits are more expressed in the CB of the DBA/2J mouse than that of the A/J mouse. Because the DBA/2J mouse is more sensitive to hypoxia than the A/J mouse, our general hypothesis is that BK channels play a role in the sensitivity of the mouse CB to mild hypoxia. We performed vigorous analysis of the gene expression of α, ß2, and ß4 subunits of BK channels in the CB. We found that α and ß2 subunits were expressed more in the CB of the DBA/2J mice than that of the A/J mice. No differences were found in the ß4 subunit expression. These differences were not seen in the neighboring tissues, the superior cervical ganglion and the carotid artery, suggesting that the differences are CB specific. Further, the sensitivity of BK channels in GCs to mild hypoxia was examined in patch clamp experiments using undissociated CBs. Iberiotoxin significantly inhibited K current of GCs in the DBA/2J mice, but not in the A/J mice. When reducing PO(2) to ∼70 mmHg, K current reversibly decreased in GCs of the DBA/2J, but not of the A/J mice. In the presence of iberiotoxin, mild hypoxia did not inhibit K current in either strains. Thus, the data suggest that BK channels in GCs of the DBA/2J mice are sensitive to mild hypoxia. Differential expression of BK channel ß subunits in the CBs may, at least in part, explain the different hypoxic sensitivity in these mouse strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...