Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 22(11): 1290-1303, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37643767

ABSTRACT

DLBCL are aggressive, rapidly proliferating tumors that critically depend on the ATF4-mediated integrated stress response (ISR) to adapt to stress caused by uncontrolled growth, such as hypoxia, amino acid deprivation, and accumulation of misfolded proteins. Here, we show that ISR hyperactivation is a targetable liability in DLBCL. We describe a novel class of compounds represented by BTM-3528 and BTM-3566, which activate the ISR through the mitochondrial protease OMA1. Treatment of tumor cells with compound leads to OMA1-dependent cleavage of DELE1 and OPA1, mitochondrial fragmentation, activation of the eIF2α-kinase HRI, cell growth arrest, and apoptosis. Activation of OMA1 by BTM-3528 and BTM-3566 is mechanistically distinct from inhibitors of mitochondrial electron transport, as the compounds induce OMA1 activity in the absence of acute changes in respiration. We further identify the mitochondrial protein FAM210B as a negative regulator of BTM-3528 and BTM-3566 activity. Overexpression of FAM210B prevents both OMA1 activation and apoptosis. Notably, FAM210B expression is nearly absent in healthy germinal center B-lymphocytes and in derived B-cell malignancies, revealing a fundamental molecular vulnerability which is targeted by BTM compounds. Both compounds induce rapid apoptosis across diverse DLBCL lines derived from activated B-cell, germinal center B-cell, and MYC-rearranged lymphomas. Once-daily oral dosing of BTM-3566 resulted in complete regression of xenografted human DLBCL SU-DHL-10 cells and complete regression in 6 of 9 DLBCL patient-derived xenografts. BTM-3566 represents a first-of-its kind approach of selectively hyperactivating the mitochondrial ISR for treating DLBCL.


Subject(s)
Lymphoma, B-Cell , Peptide Hydrolases , Humans , Peptide Hydrolases/metabolism , GTP Phosphohydrolases/metabolism , Mitochondria/metabolism , Mitochondrial Proteins , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism
2.
Am J Emerg Med ; 58: 106-113, 2022 08.
Article in English | MEDLINE | ID: mdl-35660367

ABSTRACT

INTRODUCTION: Right heart failure (RHF) is a clinical syndrome with impaired right ventricular cardiac output due to a variety of etiologies including ischemia, elevated pulmonary arterial pressure, or volume overload. Emergency department (ED) patients with an acute RHF exacerbation can be diagnostically and therapeutically challenging to manage. OBJECTIVE: This narrative review describes the pathophysiology of right ventricular dysfunction and pulmonary hypertension, the methods to diagnose RHF in the ED, and management strategies. DISCUSSION: Right ventricular contraction normally occurs against a low pressure, highly compliant pulmonary vascular system. This physiology makes the right ventricle susceptible to acute changes in afterload, which can lead to RHF. Patients with acute RHF may present with an acute illness and have underlying chronic pulmonary hypertension due to left ventricular failure, pulmonary arterial hypertension, chronic lung conditions, thromboemboli, or idiopathic conditions. Patients can present with a variety of symptoms resulting from systemic edema and hemodynamic compromise. Evaluation with electrocardiogram, laboratory analysis, and imaging is necessary to evaluate cardiac function and end organ injury. Management focuses on treating the underlying condition, optimizing oxygenation and ventilation, treating arrhythmias, and understanding the patient's hemodynamics with bedside ultrasound. As RHF patients are preload dependent they may require fluid resuscitation or diuresis. Hypotension should be rapidly addressed with vasopressors. Cardiac contractility can be augmented with inotropes. Efforts should be made to support oxygenation while trying to avoid intubation if possible. CONCLUSIONS: Emergency clinician understanding of this condition is important to diagnose and treat this life-threatening cardiopulmonary disorder.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Ventricular Dysfunction, Right , Heart Failure/diagnosis , Heart Failure/etiology , Heart Failure/therapy , Heart Ventricles , Humans , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/therapy , Ventricular Dysfunction, Right/diagnosis , Ventricular Dysfunction, Right/etiology , Ventricular Dysfunction, Right/therapy , Ventricular Function, Right/physiology
4.
Bioorg Med Chem Lett ; 27(18): 4471-4477, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28844391

ABSTRACT

A class of substituted 1-thiazol-2-yl-N-3-methyl-1H-pyrozole-5-carboxylic acid derivatives was found to have potent anti-proliferative activity against a broad range of tumor cell lines. A compound from this class (14) was profiled across a broad panel of hematologic and solid tumor cancer cell lines demonstrating cell cycle arrest at the G0/G1 interphase and has potent anti-proliferative activity against a distinct and select set of cancer cell types with no observed effects on normal human cells. An example is the selective inhibition of human B-cell lymphoma cell line (BJAB). Compound 14 was orally bioavailable and tolerated well in mice. Synthesis and structure activity relationships (SAR) in this series of compounds are discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Carboxylic Acids/pharmacology , Thiazoles/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Carboxylic Acids/administration & dosage , Carboxylic Acids/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Mice , Molecular Structure , Structure-Activity Relationship , Thiazoles/administration & dosage , Thiazoles/chemistry , Tissue Distribution
5.
PLoS One ; 9(7): e101044, 2014.
Article in English | MEDLINE | ID: mdl-25019514

ABSTRACT

Oxidative stress is generated by reactive oxygen species (ROS) produced in response to metabolic activity and environmental factors. Increased oxidative stress is associated with the pathophysiology of a broad spectrum of inflammatory diseases. Cellular response to excess ROS involves the induction of antioxidant response element (ARE) genes under control of the transcriptional activator Nrf2 and the transcriptional repressor Bach1. The development of synthetic small molecules that activate the protective anti-oxidant response network is of major therapeutic interest. Traditional small molecules targeting ARE-regulated gene activation (e.g., bardoxolone, dimethyl fumarate) function by alkylating numerous proteins including Keap1, the controlling protein of Nrf2. An alternative is to target the repressor Bach1. Bach1 has an endogenous ligand, heme, that inhibits Bach1 binding to ARE, thus allowing Nrf2-mediated gene expression including that of heme-oxygenase-1 (HMOX1), a well described target of Bach1 repression. In this report, normal human lung fibroblasts were used to screen a collection of synthetic small molecules for their ability to induce HMOX1. A class of HMOX1-inducing compounds, represented by HPP-4382, was discovered. These compounds are not reactive electrophiles, are not suppressed by N-acetyl cysteine, and do not perturb either ROS or cellular glutathione. Using RNAi, we further demonstrate that HPP-4382 induces HMOX1 in an Nrf2-dependent manner. Chromatin immunoprecipitation verified that HPP-4382 treatment of NHLF cells reciprocally coordinated a decrease in binding of Bach1 and an increase of Nrf2 binding to the HMOX1 E2 enhancer. Finally we show that HPP-4382 can inhibit Bach1 activity in a reporter assay that measures transcription driven by the human HMOX1 E2 enhancer. Our results suggest that HPP-4382 is a novel activator of the antioxidant response through the modulation of Bach1 binding to the ARE binding site of target genes.


Subject(s)
Antioxidant Response Elements , Basic-Leucine Zipper Transcription Factors/antagonists & inhibitors , Basic-Leucine Zipper Transcription Factors/metabolism , Fanconi Anemia Complementation Group Proteins/antagonists & inhibitors , Fanconi Anemia Complementation Group Proteins/metabolism , Heme Oxygenase-1/genetics , Transcriptional Activation , Chromatin Immunoprecipitation , Fibroblasts/drug effects , Heme/metabolism , Heme Oxygenase-1/metabolism , Humans , Oxidative Stress
6.
J Recept Signal Transduct Res ; 29(5): 246-56, 2009.
Article in English | MEDLINE | ID: mdl-19627252

ABSTRACT

Interleukin-1 (IL-1alpha) induced inflammatory and pro-fibrotic responses in human lung fibroblasts are mediated by activation of MAPK and NFkappaB pathways. The purpose of the present study was to broadly profile the activity of a variety of compounds which function as inhibitors of these key signaling pathways that may affect IL-1alpha mediated gene changes. A reference set of genes was derived from microarray analysis of IL-1alpha stimulated cells. The genes were chosen to provide a range of expression profiles which serve to represent the actions of the underlying signaling network. We show that G(s)-coupled receptor agonists have a unique pattern of activity as represented by their impact on IL-1alpha dependent gene changes. These effects were not mimicked by direct inhibitors of p38, JNK, MEK or IKK but were mimicked by forskolin and cAMP analogs. These findings indicate that cAMP/PKA serves as a point of convergence for regulation of IL-1alpha responses by multiple G(s)-coupled receptors and regulates IL-1alpha responses by a distinct mechanism that does not solely involve direct inhibition of p38, JNK, MEK or IKK. The data also point to a potentially useful paradigm wherein monitoring of a small subset of genes is sufficient to identify pathway activity of novel compounds.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Profiling , Interleukin-1alpha/pharmacology , Receptors, G-Protein-Coupled/agonists , Signal Transduction/drug effects , Alprostadil/analogs & derivatives , Alprostadil/pharmacology , Anti-Ulcer Agents/pharmacology , Calcium/metabolism , Cells, Cultured , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/genetics , Enzyme Inhibitors/pharmacology , Fibroblasts/metabolism , Humans , Hydantoins/pharmacology , I-kappa B Kinase/antagonists & inhibitors , I-kappa B Kinase/metabolism , Iloprost/pharmacology , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Lung/cytology , Lung/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/metabolism , Misoprostol/pharmacology , Oligonucleotide Array Sequence Analysis , Platelet Aggregation Inhibitors/pharmacology , Prostaglandins E, Synthetic/pharmacology , Receptors, Prostaglandin/agonists , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...