Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000065

ABSTRACT

Photochemical sealing of a nerve wrap over the repair site isolates and optimizes the regenerating nerve microenvironment. To facilitate clinical adoption of the technology, we investigated photosealed autologous tissue in a rodent sciatic nerve transection and repair model. Rats underwent transection of the sciatic nerve with repair performed in three groups: standard microsurgical neurorrhaphy (SN) and photochemical sealing with a crosslinked human amnion (xHAM) or autologous vein. Functional recovery was assessed at four-week intervals using footprint analysis. Gastrocnemius muscle mass preservation, histology, and nerve histomorphometry were evaluated at 120 days. Nerves treated with a PTB-sealed autologous vein improved functional recovery at 120 days although the comparison between groups was not significantly different (SN: -58.4 +/- 10.9; XHAM: -57.9 +/- 8.7; Vein: -52.4 +/- 17.1). Good muscle mass preservation was observed in all groups, with no statistical differences between groups (SN: 69 +/- 7%; XHAM: 70 +/- 7%; Vein: 70 +/- 7%). Histomorphometry showed good axonal regeneration in all repair techniques. These results demonstrate that peripheral nerve repair using photosealed autologous veins produced regeneration at least equivalent to current gold-standard microsurgery. The use of autologous veins removes costs and foreign body concerns and would be readily available during surgery. This study illustrates a new repair method that could restore normal endoneurial homeostasis with minimal trauma following severe nerve injury.


Subject(s)
Nerve Regeneration , Sciatic Nerve , Animals , Rats , Nerve Regeneration/physiology , Sciatic Nerve/injuries , Sciatic Nerve/surgery , Sciatic Nerve/physiology , Humans , Amnion , Transplantation, Autologous/methods , Muscle, Skeletal , Recovery of Function , Male , Neurosurgical Procedures/methods , Veins/surgery
2.
Bioengineering (Basel) ; 10(12)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38136031

ABSTRACT

Autonomization is a physiological process allowing a flap to develop neo-vascularization from the reconstructed wound bed. This phenomenon has been used since the early application of flap surgeries but still remains poorly understood. Reconstructive strategies have greatly evolved since, and fasciocutaneous flaps have progressively replaced muscle-based reconstructions, ensuring better functional outcomes with great reliability. However, plastic surgeons still encounter challenges in complex cases where conventional flap reconstruction reaches its limitations. Furthermore, emerging bioengineering applications, such as decellularized scaffolds allowing a complex extracellular matrix to be repopulated with autologous cells, also face the complexity of revascularization. The objective of this article is to gather evidence of autonomization phenomena. A systematic review of flap autonomization is then performed to document the minimum delay allowing this process. Finally, past and potential applications in bio- and tissue-engineering approaches are discussed, highlighting the potential for in vivo revascularization of acellular scaffolds.

3.
Nature ; 604(7904): 92-97, 2022 04.
Article in English | MEDLINE | ID: mdl-35134814

ABSTRACT

Fully automated synthetic chemistry would substantially change the field by providing broad on-demand access to small molecules. However, the reactions that can be run autonomously are still limited. Automating the stereospecific assembly of Csp3-C bonds would expand access to many important types of functional organic molecules1. Previously, methyliminodiacetic acid (MIDA) boronates were used to orchestrate the formation of Csp2-Csp2 bonds and were effective building blocks for automating the synthesis of many small molecules2, but they are incompatible with stereospecific Csp3-Csp2 and Csp3-Csp3 bond-forming reactions3-10. Here we report that hyperconjugative and steric tuning provide a new class of tetramethyl N-methyliminodiacetic acid (TIDA) boronates that are stable to these conditions. Charge density analysis11-13 revealed that redistribution of electron density increases covalency of the N-B bond and thereby attenuates its hydrolysis. Complementary steric shielding of carbonyl π-faces decreases reactivity towards nucleophilic reagents. The unique features of the iminodiacetic acid cage2, which are essential for generalized automated synthesis, are retained by TIDA boronates. This enabled Csp3 boronate building blocks to be assembled using automated synthesis, including the preparation of natural products through automated stereospecific Csp3-Csp2 and Csp3-Csp3 bond formation. These findings will enable increasingly complex Csp3-rich small molecules to be accessed via automated assembly.

SELECTION OF CITATIONS
SEARCH DETAIL
...