Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bone Marrow Transplant ; 59(4): 489-495, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38253870

ABSTRACT

Acute myeloid leukemia (AML) still constitutes a dreadful disease with limited therapeutic options. Chimeric antigen receptor (CAR)-modified T cells struggle to target AML partly due to a lack of true AML-exclusive antigens and heterogeneity of the disease. Natural killer (NK) cells possess a high intrinsic killing capacity against AML and might be well suited for the treatment of this disease. However, the generation of primary CAR-NK cells can be difficult and time consuming. Therefore, robust systems for the generation of high numbers of CAR-NK cells under GMP conditions are required. Here we report on the automated generation of high numbers of primary CD33-targeting CAR-NK cells using the CliniMACS Prodigy® platform. Automated-produced CD33-CAR-NK cells showed similar phenotype and cytotoxicity compared to small-scale-produced CD33-CAR-NK cells in vitro and were able to strongly reduce leukemic burden in an OCI-AML2 NSG-SGM3 xenograft mouse model in vivo following a cross-site shipment of the cell product. This technology might be well suited for the generation of primary CAR-modified NK cells for a broad range of targets and could facilitate clinical transition.


Subject(s)
Killer Cells, Natural , Leukemia, Myeloid, Acute , Humans , Animals , Mice , Cell Line, Tumor , Leukemia, Myeloid, Acute/genetics , Immunotherapy, Adoptive
2.
Commun Med (Lond) ; 2(1): 140, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36352067

ABSTRACT

BACKGROUND: The SARS-CoV-2 variant B.1.1.529 potentially escapes immunity from vaccination via a heavily mutated Spike protein. Here, we analyzed whether T cell memory towards the B.1.1.529 Spike protein is present in individuals who received two or three doses of vaccines designed against the original Wuhan strain of SARS-CoV-2. METHODS: PBMCs were isolated from two- and three-times vaccinated study participants and incubated in vitro with peptide pools of the Spike protein derived from sequences of the original Wuhan or the B.1.1.529 strains of SARS-CoV-2. Activated antigen-specific T cells were detected by flow cytometry. In silico analyses with NetMHCpan and NetMHCIIpan were used to determine differences in MHC class presentation between the original strain and the B.1.1.529 strain for the most common MHCs in the European-Caucasian population. RESULTS: Here we show, that both CD4 and CD8 responses to the B.1.1.529 Spike protein are marginally reduced compared to the ancestor protein and a robust T cell response is maintained. Epitope analyses reveal minor differences between the two SARS-CoV-2 strains in terms of MHC class presentations for the MHC-alleles being most common in the European-Caucasian population. CONCLUSIONS: The memory T cell response induced via first generation vaccination remains robust and is mostly unaffected by B.1.1.529 mutations. Correspondingly, in silico analyses of MHC presentation of epitopes derived from the B.1.1.529 Spike protein shows marginal differences compared to the ancestral SARS-CoV-2 strain.


Vaccination against SARS-CoV-2 results in the production of proteins called antibodies, that bind and inactivate the virus, and cells that help to eliminate it from the body in a future encounter, such as memory T cells. Both antibodies and memory T cells remain in the body after vaccination with memory T cells being present for longer than antibodies. Here, we determined that even though most of the first generation vaccines were created to prevent infection with the original SARS-CoV-2 virus, the memory T cells generated by this vaccination can also detect the omicron variant.

SELECTION OF CITATIONS
SEARCH DETAIL
...