Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Org Chem ; 88(9): 5875-5892, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37070610

ABSTRACT

Acylation of benzo[c][1,2,5]thiadiazole-4,7-diamine and 2-hexyl-2H-benzo[d][1,2,3]triazole-4,7-diamine with aromatic acid halides furnished the corresponding N,N'-diamides, which were converted into N,N'-dithioamides by reacting with Lawesson's reagent. A method was developed for the preparation of previously unknown fused systems, dithiazolobenzo[1,2-c][1,2,5]thiadiazoles and dithiazolobenzo[1,2-d][1,2,3]triazoles, by oxidative photochemical cyclization of N,N'-dithioamides. The photophysical and (spectro)electrochemical properties of the obtained compounds and their polymer films electrochemically deposited on ITO were studied. The optical contrast and response time of the synthesized oligomers were determined. The results obtained allow us to consider these substances as promising candidates for electrochromic devices.

2.
J Org Chem ; 87(10): 6657-6667, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35522246

ABSTRACT

This article focuses on the development of practical approaches to the preparation of benzo[1,2-d:4,3-d']bis(thiazoles) using blue light-induced photochemical cyclization of N,N'-(1,4-aryl)dithioamides in the presence of p-chloranil as a mild oxidant. The proposed method allows to obtain benzo[1,2-d:4,3-d']bis(thiazoles) containing donor substituents in the conjugated chain. Photophysical and (spectro)electrochemical properties of 2,6-di([2,2'-bithiophen]-5-yl)benzo[1,2-d:4,3-d']bis(thiazole) and -benzo[1,2-d:4,5-d']bis(thiazole) are studied in detail. The properties of the synthesized compounds suggest their potential applications for organic electronics.

3.
J Org Chem ; 85(15): 10072-10082, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32643932

ABSTRACT

In this work, we describe the development of the rearrangement for 7-aryl-substituted oxazolo[5,4-b]pyridines treated with aluminum chloride into synthetically hard-to-reach benzo[c][1,7]naphthyridinones. The discovered rearrangement is applied to a variety of electron-rich (hetero)arene substrates. It offers the advantages of mild conditions (90 °C temperature), fast reaction rates (<4 h), compatibility with air moisture, and the use of inexpensive commercial reagents. The proposed reaction mechanism and key elementary reaction acts were studied in detail using quantum chemical calculations. The photophysical properties of the synthesized compounds were studied by steady-state UV-vis spectroscopy.

4.
J Org Chem ; 84(16): 10040-10049, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31315394

ABSTRACT

1,3,4-Thiadiazole, 2,2'-bi(1,3,4-thiadiazole), 2,2':5',2″-ter(1,3,4-thiadiazole), and 2,2':5',2″:5″,2‴-quater(1,3,4-thiadiazole) symmetrically disubstituted with 3-alkyl-(2,2'-bithiophen)-5-yl were synthesized by new procedures using readily available ethyl 3-alkyl-(2,2'-bithiophene)-5-carboxylate as a convenient substrate. These new compounds with a fixed number of donor rings and increasing number of acceptor rings showed very interesting, tunable redox properties. In particular, they exhibited electron affinities (EAs) ranging from -3.06 to -3.83 eV, reaching EA values desired for air-operating n-type organic semiconductors. Their electrochemically determined ionization potentials were only moderately dependent on the number of thiadiazole rings, varying from 5.83 to 6.01 eV. Emission spectra of these compounds could also be tuned in a wide range (from 470 to 600 nm). Spectroscopic and electrochemical data were confirmed by density functional theory calculations demonstrating full consistency.

5.
J Phys Chem B ; 123(27): 5690-5699, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31260313

ABSTRACT

Protein/ice interactions are investigated by a novel method based on measuring the characteristic features of X-ray diffraction (XRD) patterns of hexagonal ice (Ih). Aqueous solutions of four proteins and other solutes are studied using high-resolution synchrotron XRD. Two pharmaceutical proteins, recombinant human albumin and monoclonal antibody (both at 100 mg/mL), have a pronounced effect on the properties of ice crystals, reducing the size of the Ih crystalline domains and increasing the microstrain. Lysozyme (100 mg/mL) and an antifreeze protein (1 mg/mL) have much weaker impact on Ih. Neither of the proteins studied exhibit preferred interactions with specific crystalline faces of Ih. It is proposed that the pharmaceutical proteins interact with ice crystals indirectly by accumulating in the quasi-liquid layer next to ice crystallization front, rather than directly, via a sorption on ice crystals. This is the first report, to the best of our knowledge, of major difference in the protein/ice interaction between non-antifreeze proteins. Another important finding is a detection of a second (minor) population of ice crystals, which is tentatively identified as a high-pressure form of ice, possibly IceIII or IceIX. This finding highlights a potential role of mechanical stresses in freeze-induced destabilization of proteins.


Subject(s)
Antibodies, Monoclonal/chemistry , Antifreeze Proteins/chemistry , Ice , Muramidase/chemistry , Serum Albumin, Human/chemistry , Humans , X-Ray Diffraction
6.
Phys Chem Chem Phys ; 19(44): 30261-30276, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29110005

ABSTRACT

A structure-property study across a series of donor-acceptor-donor structures composed of mono- and bi-(1,3,4-oxadiazole) units symmetrically substituted with alkyl functionalized bi-, ter- and quaterthiophene segments is presented. Synthetically tailoring the ratio of electron-withdrawing 1,3,4-oxadiazole to electron-releasing thiophene units and their alkyl grafting pattern permitted us to scrutinize the impact of these structural factors on the redox, absorptive and emissive properties of these push-pull molecules. Contrasting trends of redox potentials were observed, with the oxidation potential closely following the donor-to-acceptor ratio, whereas the reduction potential being tuned independently by either the number of acceptor units or the conjugation length of the donor-acceptor system. Increasing the thiophene unit contribution delivered a shift from blue to green luminescence, while the structural rigidity afforded by intramolecular non-covalent interactions between 1,3,4-oxadiazole and the thiophene moieties has been identified as the prime factor determining the emission efficiency of these molecules. All six structures investigated electro-polymerize easily, yielding electroactive and electrochromic polymers. The polymer doping process is largely influenced by the length of the oligothiophene repeating unit and the alkyl chain grafting density. Polymers with relatively short oligothiophene segments are able to support polarons and polaron-pairs, whereas those with segments longer than six thiophene units could also stabilize diamagnetic charge carries - bipolarons. Increasing the alkyl chain grafting density improved the reversibility and broadened the working potential window of the p-doping process. Stable radical anions have also been investigated, bringing detailed information about the conjugation pattern of these electron-surplus species. This study delivers interesting clues towards the conscious structural design of bespoke frontier energy level oligothiophene functional materials and their polymers by incorporating a structurally matching 1,3,4-oxadiazole unit.

7.
Beilstein J Org Chem ; 13: 313-322, 2017.
Article in English | MEDLINE | ID: mdl-28326140

ABSTRACT

New photoluminescent donor-acceptor-donor (DAD) molecules, namely 5'-aryl-substituted 2,5-bis(3-decyl-2,2'-bithiophen-5-yl)-1,3,4-oxadiazoles were prepared by palladium-catalyzed coupling from readily available compounds such as ethyl 3-decyl-2,2'-bithiophene-5-carboxylate and aryl halides. The obtained compounds feature increasing bathochromic shifts in their emission spectra with increasing aryl-substituent size yielding blue to bluish-green emissions. At the same time, their absorption spectra are almost independent from the identity of the terminal substituent with λmax values ranging from 395 to 405 nm. The observed trends are perfectly predicted by quantum chemical DFT/TDDFT calculations carried out for these new molecules.

8.
Chemistry ; 22(33): 11795-806, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27404332

ABSTRACT

Star-shaped conjugated molecules, consisting of a benzene central unit symmetrically trisubstituted with either oxa- or thiadiazole bithiophene groups, were synthesized as promising molecules and building blocks for application in (opto)electronics and electrochromic devices. Their optical (Eg (opt)) as well as electrochemical (Eg (electro)) band gaps depended on the type of the side arm and the number of solubilizing alkyl substituents. Oxadiazole derivatives showed Eg (opt) slightly below 3 eV and by 0.2 eV larger than those determined for thiadiazole-based compounds. The presence of alkyl substituents in the arms additionally lowered the band gap. The obtained compounds were efficient electroluminophores in guest/host-type light-emitting diodes. They also showed a strong tendency to self-organize in monolayers deposited on graphite, as evidenced by scanning tunneling microscopy. The structural studies by X-ray scattering revealed the formation of supramolecular columnar stacks in which the molecules were organized. Differences in macroscopic alignment in the specimen indicated variations in the self-assembly mechanism between the molecules. The compounds as trifunctional monomers were electrochemically polymerized to yield the corresponding polymer network. As shown by UV/Vis-NIR spectroelectrochemical studies, these networks exhibited reversible electrochromic behavior both in the oxidation and in the reduction modes.

9.
J Pharm Sci ; 105(7): 2129-38, 2016 07.
Article in English | MEDLINE | ID: mdl-27287516

ABSTRACT

Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions. Warming the sorbitol-water mixtures from 100 to 228 K resulted in partial ice melting, with simultaneous reduction in the microstrain and increase in crystallite size, that is, recrystallization. In contrast to sorbitol solutions, ice crystals in the BSA solutions preserved both the microstrain and smaller crystallite size on partial melting, demonstrating that BSA inhibits ice recrystallization. The results are consistent with BSA partitioning into quasi-liquid layer on ice crystals but not with a direct protein-ice interaction and protein sorption on ice surface. The study shows for the first time that a common (i.e., not-antifreeze) protein can have a major impact on ice recrystallization and also presents synchrotron X-ray diffraction as a unique tool for quantification of crystallinity and disorder in frozen aqueous systems.


Subject(s)
Cryoprotective Agents/chemistry , Proteins/chemistry , Calorimetry, Differential Scanning , Crystallization , Freeze Drying , Freezing , Particle Size , Pharmaceutical Solutions , Serum Albumin, Bovine/chemistry , Sorbitol/chemistry , Synchrotrons , X-Ray Diffraction
10.
Beilstein J Org Chem ; 10: 1596-602, 2014.
Article in English | MEDLINE | ID: mdl-25161716

ABSTRACT

A new synthetic approach towards the preparation of functionalised, soluble, donor-acceptor (DA) alkylbithiophene derivatives of oxadiazole, thiadiazole and triazole is reported. Taking advantage of the Fiesselmann reaction, reactive bithiophene synthons having alkyl or alkoxy substituents at designated positions are prepared. Following a synthetic strategy, featuring the bottom-up approach, sequential structural elements are built, starting from a simple thiophene compound, until the target molecule is obtained, all in good yield. Supplementing the well established methods of oxadiazole and thiadiazole synthesis, efficient ring closure reaction affording a 4H-1,2,4-triazole unit is presented. All target ambipolar compounds display strong photoluminescence with measured quantum yields up to 0.59. Modification of the demonstrated synthetic routes may be exploited for the preparation of longer, specifically functionalised oligothiophenes, coupled to other heteroaromatic cores.

11.
Org Lett ; 16(7): 1833-5, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24624889

ABSTRACT

A simple and efficient approach is developed for the synthesis of substituted 2,2'-bithiophene- and 2,2':5',2″-terthiophene-5-carboxylic acids and esters which is based on thiophene ring closure in the Fiesselmann reaction. Using this method, derivatives containing a long alkyl chain with or without an end functional group or an aryl substituent can be conveniently prepared.


Subject(s)
Carboxylic Acids/chemical synthesis , Thiophenes/chemical synthesis , Carboxylic Acids/chemistry , Esters , Ketones/chemistry , Molecular Structure , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...