Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 105(5-2): 055207, 2022 May.
Article in English | MEDLINE | ID: mdl-35706251

ABSTRACT

We propose a setup for positron acceleration consisting of an electron driver and a laser pulse creating a twofold plasma column structure. The resulting wakefield is capable of accelerating positron bunches over long distances even when the evolution of the driver is considered. The scheme is studied by means of particle-in-cell simulations. Further, the analytical expression for the accelerating and focusing fields are obtained, showing the equilibrium lines along which the witness bunch is accelerated.

2.
Phys Rev Lett ; 127(17): 175001, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34739269

ABSTRACT

It is shown that electrostatic plasma wakefields can efficiently radiate at harmonics of the plasma frequency when the plasma has a positive density gradient along the propagation direction of a driver. The driver propagating at a subluminal group velocity excites the plasma wakefield with the same phase velocity. However, due to the positive density gradient, the wake phase velocity steadily increases behind the driver. As soon as the phase velocity becomes superluminal, the electrostatic wakefield couples efficiently to radiative electromagnetic modes. The period of time when the phase velocity stays above the speed of light depends on the density gradient scale length. The wake radiates at well-defined harmonics of the plasma frequency in the terahertz band. The angle of emission depends on the gradient scale and the time passed behind the driver. For appropriate plasma and driver parameters, the wake can radiate away nearly all its energy, which potentially results in an efficient, narrow-band, and tunable source of terahertz radiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...