Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(8): e0237401, 2020.
Article in English | MEDLINE | ID: mdl-32841277

ABSTRACT

Implantation of bone marrow-derived cells (BMCs) into mouse hearts post-myocardial infarction (MI) limits cardiac functional decline. However, clinical trials of post-MI BMC therapy have yielded conflicting results. While most laboratory experiments use healthy BMC donor mice, clinical trials use post-MI autologous BMCs. Post-MI mouse BMCs are therapeutically impaired, due to inflammatory changes in BMC composition. Thus, therapeutic efficacy of the BMCs progressively worsens after MI but recovers as donor inflammatory response resolves. The availability of post-MI patient BM mononuclear cells (MNCs) from the TIME and LateTIME clinical trials enabled us to test if human post-MI MNCs undergo a similar period of impaired efficacy. We hypothesized that MNCs from TIME trial patients would be less therapeutic than healthy human donor MNCs when implanted into post-MI mouse hearts, and that therapeutic properties would be restored in MNCs from LateTIME trial patients. Post-MI SCID mice received MNCs from healthy donors, TIME patients, or LateTIME patients. Cardiac function improved considerably in the healthy donor group, but neither the TIME nor LateTIME group showed therapeutic effect. Conclusion: post-MI human MNCs lack therapeutic benefits possessed by healthy MNCs, which may partially explain why BMC clinical trials have been less successful than mouse studies.


Subject(s)
Bone Marrow Transplantation , Clinical Trials as Topic , Myocardial Infarction/therapy , Animals , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Myocardial Infarction/genetics , Treatment Outcome
2.
Mol Ther ; 26(7): 1685-1693, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29914756

ABSTRACT

Treatment of myocardial infarction (MI) with bone marrow cells (BMCs) improves post-MI cardiac function in rodents. However, clinical trials of BMC therapy have been less effective. While most rodent experiments use young healthy donors, patients undergoing autologous cell therapy are older and post-MI. We previously demonstrated that BMCs from aged and post-MI donor mice are therapeutically impaired, and that donor MI induces inflammatory changes in BMC composition including reduced levels of B lymphocytes. Here, we hypothesized that B cell alterations in bone marrow account for the reduced therapeutic potential of post-MI and aged donor BMCs. Injection of BMCs from increasingly aged donor mice resulted in progressively poorer cardiac function and larger infarct size. Flow cytometry revealed fewer B cells in aged donor bone marrow. Therapeutic efficacy of young healthy donor BMCs was reduced by depletion of B cells. Implantation of intact or lysed B cells improved cardiac function, whereas intact or lysed T cells provided only minor benefit. We conclude that B cells play an important paracrine role in effective BMC therapy for MI. Reduction of bone marrow B cells because of age or MI may partially explain why clinical autologous cell therapy has not matched the success of rodent experiments.


Subject(s)
Aging/physiology , B-Lymphocytes/cytology , Bone Marrow Cells/cytology , Bone Marrow/physiology , Heart/physiology , Myocardial Infarction/physiopathology , Animals , Bone Marrow Transplantation/methods , Cell- and Tissue-Based Therapy/methods , Flow Cytometry/methods , Male , Mice , Mice, Inbred C57BL
3.
J Am Heart Assoc ; 5(1)2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26738788

ABSTRACT

BACKGROUND: Circulating angiogenic cells (CACs) are peripheral blood cells whose functional capacity inversely correlates with cardiovascular risk and that have therapeutic benefits in animal models of cardiovascular disease. However, donor age and disease state influence the efficacy of autologous cell therapy. We sought to determine whether age or coronary artery disease (CAD) impairs the therapeutic potential of CACs for myocardial infarction (MI) and whether the use of ex vivo gene therapy to overexpress endothelial nitric oxide (NO) synthase (eNOS) overcomes these defects. METHODS AND RESULTS: We recruited 40 volunteers varying by sex, age (< or ≥45 years), and CAD and subjected their CACs to well-established functional tests. Age and CAD were associated with reduced CAC intrinsic migration (but not specific response to vascular endothelial growth factor, adherence of CACs to endothelial tubes, eNOS mRNA and protein levels, and NO production. To determine how CAC function influences therapeutic potential, we injected the 2 most functional and the 2 least functional CAC isolates into mouse hearts post MI. The high-function isolates substantially improved cardiac function, whereas the low-function isolates led to cardiac function only slightly better than vehicle control. Transduction of the worst isolate with eNOS cDNA adenovirus increased NO production, migration, and cardiac function of post-MI mice implanted with the CACs. Transduction of the best isolate with eNOS small interfering RNA adenovirus reduced all of these capabilities. CONCLUSIONS: Age and CAD impair multiple functions of CACs and limit therapeutic potential for the treatment of MI. eNOS gene therapy in CACs from older donors or those with CAD has the potential to improve autologous cell therapy outcomes.


Subject(s)
Coronary Artery Disease/enzymology , Endothelial Progenitor Cells/enzymology , Endothelial Progenitor Cells/transplantation , Myocardial Infarction/surgery , Neovascularization, Physiologic , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Stem Cell Transplantation/methods , Adult , Aged , Animals , Case-Control Studies , Cell Movement , Cells, Cultured , Coculture Techniques , Coronary Artery Disease/diagnosis , Disease Models, Animal , Female , Humans , Male , Mice, SCID , Middle Aged , Myocardial Infarction/enzymology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Nitric Oxide Synthase Type III/genetics , Phenotype , RNA Interference , Recovery of Function , Regeneration , Signal Transduction , Time Factors , Transduction, Genetic , Transfection
4.
EPMA J ; 3(1): 16, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23140237

ABSTRACT

In the present state of healthcare, usual medical care is generally given to the already diseased person, while the key link-personal health monitoring underlain by predictive, preventive, and personalised medicine (PPPM) techniques that are being intensively elaborated worldwide-is simply missing. It is this link, based on the recognition of subclinical conditions, prediction, and further preventive measures, that is capable of regulating morbidity and diminishing the rates of disability among able-bodied population, thus significantly cutting the traditionally high costs of treating the already diseased people. To achieve the above-mentioned goal-the elaboration of the PPPM concept and its practical implementation-it is necessary to create a fundamentally new strategy based upon the subclinical recognition of the signs-bioindicators of cryptic abnormalities long before the disease clinically manifests itself. The implementation of PPPM programme requires an adjusted technology for the proper interpretation of diagnostic data, which would allow for the current 'physician-patient' model to be gradually replaced by a novel model, 'medical advisor-healthy men-at-risk'. This is the reason for an additional need in organising combinatorial scientific, clinical, training and educational projects in the area of PPPM to elicit the content of this new branch of medicine.

SELECTION OF CITATIONS
SEARCH DETAIL
...