Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 192: 106223, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37903701

ABSTRACT

Ocean-based carbon dioxide removal has gained immense attention as a countermeasure against climate change. The enhancement of ocean alkalinity and the creation of new blue carbon ecosystems are considered effective approaches for this. To evaluate the function of steelmaking slag from the viewpoints of CO2 reduction and creation of new blue carbon ecosystems, we conducted a comparative experiment using two mesocosms that replicated tidal-flats and shallow-water ecosystems. Initially, approximately 20 seagrasses (Zostera marina) were transplanted into the shallow-water area in the mesocosm tanks. The use of steelmaking slag is expected to increase the pH by releasing calcium and mitigate turbidity by solidifying dredged soil. In the experimental tank, where dredged soil and steelmaking slag were utilized as bed materials, the pH remained higher throughout the experimental period compared with the control tank, which utilized only dredged soil. As a result, pCO2 remained consistently lower in the experimental tank due to mainly its alkaline effect (March 2019: -10 ± 6 µatm, September 2019: -130 ± 47 µatm). The light environment in the control tank deteriorated due to high turbidity, whereas the turbidity in the experimental tank remained low throughout the year. The number of seagrass shoots in the experimental tank was consistently approximately 20, which was higher than that in the control tank. Additionally, more seaweed and benthic algae were observed in the experimental tank, indicating that it was more conducive to the growth of primary producers. In conclusion, tidal-flat and shallow-water ecosystems constructed using dredged soil and steelmaking slag are expected to enhance CO2 uptake and provide a habitat for primary producers that is superior to those constructed using dredged soil only.


Subject(s)
Ecosystem , Water , Soil
2.
Mar Environ Res ; 187: 105947, 2023 May.
Article in English | MEDLINE | ID: mdl-36934509

ABSTRACT

In marine ecosystems, the avid binding of iron (Fe) to organic ligands influences Fe bioavailability in seaweed. This study aimed to elucidate Fe's biological availability to seaweed and develop a simple and rapid bioassay method as a new evaluation system. Undaria pinnatifida was used as a model seaweed species and the actual seaweed samples were collected using the 0.5 m × 0.5 m quadrat from the Mashike Bay area of Hokkaido, Japan. Chlorophyll fluorescence measurements were utilized as an index to evaluate the biological -effectiveness of Fe and compared with the results of culture tests based on growth. The effect of Fe content on media, pre-culture, concentrations and types of chelating and reducing agents in clearing solutions, cleaning time, Fe removal effect, and resistance to seaweed were systematically optimized to obtain the maximum efficacy of the washing solution. A bioassay was developed to evaluate the Fe environment by combining chlorophyll fluorescence measurements. The findings suggest that the tolerance of seaweeds to the wash solution is strongly influenced by the concentrations of the chelating and reducing agents than their types. Washing with 0.02 M Ti-Citrate/EDTA solution for 80 s was the most effective in terms of maximum Fe removal with minimum cell damage. The application of pre-culture and chemical pre-treatment methods under Fe deficiency to the culture strain confirmed the maximum reproducibility in the culture test. Finally, the developed method was applied to actual seaweed samples and was found to be applicable to many seaweed species. However, the method was less robust for some seaweed species and depended on the seaweed growth stage.


Subject(s)
Iron , Seaweed , Iron/chemistry , Seaweed/chemistry , Biological Availability , Reducing Agents , Ecosystem , Reproducibility of Results , Chelating Agents , Chlorophyll
3.
Environ Pollut ; 316(Pt 1): 120473, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36273694

ABSTRACT

The present study investigated the monthly of element accumulation in seaweeds. Patterns of As, Ba, Cd, Cu, Fe, Mn, Pb, and Zn concentrations in dominant species of Phaeophyceae and Rhodophyceae, namely Saccharina japonica and Pterocladiella tenuis respectively, collected from the Betsukari coastline-Mashike, Hokkaido, Japan, were investigated. Our results indicated that element accumulation was more related to specific seaweed species than to their supply in seawater concentration. S. japonica was found to be an accumulator of As, whereas P. tenuis notably accumulated Mn. The accumulation of specific elements also affects the coupled patterns between closely related elements. The monthly pattern of Cd was similar to that of As in S. japonica, and it is an element with unknown biological function in the seaweed. The monthly accumulation pattern of Fe and Mn, a well-known closely related element that forms the extracellular surface in seaweed, was found to be similar in P. tenuis. A similar transport mechanism affected the antagonistic pattern of Cd and Zn accumulation in S. japonica. Our data can be employed in the assessment of biomonitoring of element cycles in the environment.


Subject(s)
Metals, Heavy , Rhodophyta , Seaweed , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Japan , Cadmium , Metals, Heavy/analysis
4.
Sci Total Environ ; 802: 149776, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34525751

ABSTRACT

Macroalgae can cycle arsenic (As) in the environment. In this study, the role of iron (Fe) plaque manipulation at active sites in the As biotransformation mechanism was investigated. The strain of marine macroalgal species, Pyrophia yezoensis, was inoculated in association with arsenate (As(V)) (1.0 µmol L-1) and phosphate (10 µmol L-1) in the medium for 7 days under laboratory-controlled conditions. The Fe plaque was removed by washing the Ti(III)-citrate-EDTA solution before inoculation. The limitation of Fe plaque did not significantly (p > 0.05) affect the chlorophyll fluorescence due to cellular regeneration, which was initiated immediately after washing. However, the speciation and uptake rate of As(V) increased significantly and reduced the inhibitory effect of P on the intracellular uptake of As(V) by P. yezoensis. In the culture medium without Fe plaque, approximately 66% of As(V) was removed with Vmax = 0.32 and Km = 1.92. In the absence of Fe plaque, methylated As species, such as dimethylarsinate (DMAA(V)), was recorded 0.28 µmol L-1, while in the presence of Fe plaque, the value was 0.16 µmol L-1. Inorganic trivalent As (As(III)) was absent in the washed samples; however, 0.53 µmol L-1 concentration of As(III) was still found in the presence of Fe plaque on day 7 of incubation. The results indicated that the absence of Fe plaque promoted higher intracellular uptake of As species, reduced the inhibitory effect of P, mitigated the co-precipitation bond between AsFe plaque and enhanced the detoxification process by DMAA excretion from the cell.


Subject(s)
Arsenic , Arsenicals , Seaweed , Biotransformation , Cacodylic Acid
5.
Chemosphere ; 222: 705-713, 2019 May.
Article in English | MEDLINE | ID: mdl-30738313

ABSTRACT

Freshwater and marine organisms are capable of metabolizing arsenic (As) efficiently and regulating the As biogeochemical cycles. In this study, Undaria pinnatifida was exposed to As(V) (0, 0.1, and 1 µM) and phosphate (P; 1 and 10 µM) in seawater under laboratory-controlled conditions for up to seven days to analyze As biotransformation. The growth rates and chlorophyll fluorescence of the alga were unaffected by As stress, and statistically insignificant differences were observed among the cultures (p > 0.05). As(V) was readily accumulated by this macroalga through phosphate transporters, transformed intracellularly, and excreted into the medium, depending on the As(V) to P molar ratios. The concentration of As(V) and biotransformed species As(III) and DMAA(V) varied significantly in the algal cultures on the basis of the exposure period (p < 0.05). The concentration of As(III) was initially higher but decreased with the incubation period, whereas the concentration of DMAA(V) increased gradually. At the end of the incubation, 0.04 and 0.32 µM DMAA(V) were recorded in the media containing 0.1 and 1 µM As(V) with a constant 1.0 µM P, respectively. The results also indicated that the cellular uptake of As(V) and subsequent release of DMAA(V) were inhibited by P in the medium. The biotransformation was consistent with the As(V) detoxification mechanism based on reduction and methylation, which was enhanced by the lower As(V) to P molar ratios. These findings can be helpful in understanding the contribution of macroalgae to As biogeochemistry in marine environments and the potential risks of As dietary intake.


Subject(s)
Arsenic/metabolism , Undaria/metabolism , Biotransformation , Inactivation, Metabolic , Methylation , Phosphates/pharmacology , Seawater , Seaweed/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...