Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1409116, 2024.
Article in English | MEDLINE | ID: mdl-38916036

ABSTRACT

Prasiola crispa, an aerial green alga, exhibits remarkable adaptability to the extreme conditions of Antarctica by forming layered colonies capable of utilizing far-red light for photosynthesis. Despite a recent report on the structure of P. crispa's unique light-harvesting chlorophyll (Chl)-binding protein complex (Pc-frLHC), which facilitates far-red light absorption and uphill excitation energy transfer to photosystem II, the specific genes encoding the subunits of Pc-frLHC have not yet been identified. Here, we report a draft genome sequence of P. crispa strain 4113, originally isolated from soil samples on Ongul Island, Antarctica. We obtained a 92 Mbp sequence distributed in 1,045 scaffolds comprising 10,244 genes, reflecting 87.1% of the core eukaryotic gene set. Notably, 26 genes associated with the light-harvesting Chl a/b binding complex (LHC) were identified, including four Pc-frLHC genes, with similarity to a noncanonical Lhca gene with four transmembrane helices, such as Ot_Lhca6 in Ostreococcus tauri and Cr_LHCA2 in Chlamydomonas reinhardtii. A comparative analysis revealed that Pc-frLHC shares homology with certain Lhca genes found in Coccomyxa and Trebouxia species. This similarity indicates that Pc-frLHC has evolved from an ancestral Lhca gene with four transmembrane helices and branched out within the Trebouxiaceae family. Furthermore, RNA-seq analysis conducted during the initiation of Pc-frLHC gene induction under red light illumination indicated that Pc-frLHC genes were induced independently from other genes associated with photosystems or LHCs. Instead, the genes of transcription factors, helicases, chaperones, heat shock proteins, and components of blue light receptors were identified to coexpress with Pc-frLHC. Those kinds of information could provide insights into the expression mechanisms of Pc-frLHC and its evolutional development.

2.
Nat Commun ; 14(1): 730, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792917

ABSTRACT

Prasiola crispa, an aerial green alga, forms layered colonies under the severe terrestrial conditions of Antarctica. Since only far-red light is available at a deep layer of the colony, P. crispa has evolved a molecular system for photosystem II (PSII) excitation using far-red light with uphill energy transfer. However, the molecular basis underlying this system remains elusive. Here, we purified a light-harvesting chlorophyll (Chl)-binding protein complex from P. crispa (Pc-frLHC) that excites PSII with far-red light and revealed its ring-shaped structure with undecameric 11-fold symmetry at 3.13 Šresolution. The primary structure suggests that Pc-frLHC evolved from LHCI rather than LHCII. The circular arrangement of the Pc-frLHC subunits is unique among eukaryote LHCs and forms unprecedented Chl pentamers at every subunit‒subunit interface near the excitation energy exit sites. The Chl pentamers probably contribute to far-red light absorption. Pc-frLHC's unique Chl arrangement likely promotes PSII excitation with entropy-driven uphill excitation energy transfer.


Subject(s)
Photosynthesis , Photosystem I Protein Complex , Antarctic Regions , Photosystem I Protein Complex/metabolism , Thylakoids/metabolism , Photosystem II Protein Complex/metabolism , Energy Transfer , Light-Harvesting Protein Complexes/metabolism , Chlorophyll/metabolism
3.
Biochim Biophys Acta Bioenerg ; 1861(2): 148139, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31825812

ABSTRACT

An aerial green alga, Prasiola crispa (Lightf.) Menegh, which is known to form large colonies in Antarctic habitats, is subject to severe environmental stresses due to low temperature, draught and strong sunlight in summer. A considerable light-absorption by long-wavelength chlorophylls (LWC) at around 710 nm, which seem to consist of chlorophyll a, was detected in thallus of P. crispa harvested at a terrestrial environment in Antarctica. Absorption level at 710 nm against that at 680 nm was correlated with fluorescence emission intensity at 713 nm at room temperature and the 77 K fluorescence emission band from LWC was found to be emitted at 735 nm. We demonstrated that the LWC efficiently transfer excitation energy to photosystem II (PSII) reaction center from measurements of action spectra of photosynthetic oxygen evolution and P700 photo-oxidation. The global quantum yield of PSII excitation in thallus by far-red light was shown to be as high as by orange light, and the excitation balance between PSII and PSI was almost same in the two light sources. It is thus proposed that the LWC increase the photosynthetic productivity in the lower parts of overlapping thalli and contribute to the predominance of alga in the severe environment.


Subject(s)
Chlorophyll A/metabolism , Chlorophyta/metabolism , Light , Photosystem II Protein Complex/metabolism , Antarctic Regions , Light-Harvesting Protein Complexes/metabolism , Oxygen/metabolism , Photosystem I Protein Complex/metabolism , Spectrometry, Fluorescence
4.
Ann Bot ; 122(7): 1263-1278, 2018 12 31.
Article in English | MEDLINE | ID: mdl-30052754

ABSTRACT

Background and Aims: All photosynthetic organisms are faced with photoinhibition, which would lead to death in severe environments. Because light quality and light intensity fluctuate dynamically in natural microenvironments, quantitative and qualitative analysis of photoinhibition is important to clarify how this environmental pressure has impacted ecological behaviour in different organisms. Methods: We evaluated the wavelength dependency of photoinactivation to photosystem II (PSII) of Prasiola crispa (green alga), Umbilicaria decussata (lichen) and Ceratodon purpureus (bryophyte) harvested from East Antarctica. For evaluation, we calculated reaction coefficients, Epis, of PSII photoinactivation against energy dose using a large spectrograph. Daily fluctuation of the rate coefficient of photoinactivation, kpi, was estimated from Epis and ambient light spectra measured during the summer season. Key Results: Wavelength dependency of PSII photoinactivation was different for the three species, although they form colonies in close proximity to each other in Antarctica. The lichen exhibited substantial resistance to photoinactivation at all wavelengths, while the bryophyte showed sensitivity only to UV-B light (<325 nm). On the other hand, the green alga, P. crispa, showed ten times higher Epi to UV-B light than the bryophyte. It was much more sensitive to UV-A (325-400 nm). The risk of photoinhibition fluctuated considerably throughout the day. On the other hand, Epis were reduced dramatically for dehydrated compared with hydrated P. crispa. Conclusions: The deduced rate coefficients of photoinactivation under ambient sunlight suggested that P. crispa needs to pay a greater cost to recover from photodamage than the lichen or the bryophyte in order to keep sufficient photosynthetic activity under the Antarctic habitat. A newly identified drought-induced protection mechanism appears to operate in P. crispa, and it plays a critical role in preventing the oxygen-evolving complex from photoinactivation when the repair cycle is inhibited by dehydration.


Subject(s)
Bryopsida/physiology , Chlorophyta/physiology , Droughts , Lichens/physiology , Light , Photosystem II Protein Complex/metabolism , Antarctic Regions , Bryopsida/radiation effects , Chlorophyta/radiation effects , Ecosystem , Lichens/radiation effects , Photosynthesis
5.
Photosynth Res ; 136(2): 229-243, 2018 May.
Article in English | MEDLINE | ID: mdl-29124652

ABSTRACT

Some mosses are extremely tolerant of drought stress. Their high drought tolerance relies on their ability to effectively dissipate absorbed light energy to heat under dry conditions. The energy dissipation mechanism in a drought-tolerant moss, Bryum argenteum, has been investigated using low-temperature picosecond time-resolved fluorescence spectroscopy. The results are compared between moss thalli samples harvested in Antarctica and in Japan. Both samples show almost the same quenching properties, suggesting an identical drought tolerance mechanism for the same species with two completely different habitats. A global target analysis was applied to a large set of data on the fluorescence-quenching dynamics for the 430-nm (chlorophyll-a selective) and 460-nm (chlorophyll-b and carotenoid selective) excitations in the temperature region from 5 to 77 K. This analysis strongly suggested that the quencher is formed in the major peripheral antenna of photosystem II, whose emission spectrum is significantly broadened and red-shifted in its quenched form. Two emission components at around 717 and 725 nm were assigned to photosystem I (PS I). The former component at around 717 nm is mildly quenched and probably bound to the PS I core complex, while the latter at around 725 nm is probably bound to the light-harvesting complex. The dehydration treatment caused a blue shift of the PS I emission peak via reduction of the exciton energy flow to the pigment responsible for the 725 nm band.


Subject(s)
Bryopsida/physiology , Chlorophyll/chemistry , Photosystem I Protein Complex/chemistry , Antarctic Regions , Bryopsida/chemistry , Chlorophyll/metabolism , Dehydration , Droughts , Energy Transfer , Japan , Light , Models, Biological , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/chemistry , Photosystem II Protein Complex/metabolism , Spectrometry, Fluorescence/methods , Temperature
6.
Biosci Biotechnol Biochem ; 81(12): 2244-2252, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29098938

ABSTRACT

A unique electron-accepting analog of vitamin K1 found in photosystem I in several species of oxygenic photosynthetic microorganisms was confirmed to be 5'-hydroxyphylloquinone (1) through stereo-uncontrolled synthesis. Furthermore, the stereochemistry of 1 obtained from Synechococcus sp. PCC 7942 was assigned to be 5'S using proline-catalyzed stereocontrolled reactions.


Subject(s)
Photosystem I Protein Complex/metabolism , Vitamin K 1/analogs & derivatives , Electron Transport , Stereoisomerism , Synechococcus/metabolism , Vitamin K 1/chemistry , Vitamin K 1/metabolism
7.
Plant Physiol ; 166(1): 337-48, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25056923

ABSTRACT

Lichens result from symbioses between a fungus and either a green alga or a cyanobacterium. They are known to exhibit extreme desiccation tolerance. We investigated the mechanism that makes photobionts biologically active under severe desiccation using green algal lichens (chlorolichens), cyanobacterial lichens (cyanolichens), a cephalodia-possessing lichen composed of green algal and cyanobacterial parts within the same thallus, a green algal photobiont, an aerial green alga, and a terrestrial cyanobacterium. The photosynthetic response to dehydration by the cyanolichen was almost the same as that of the terrestrial cyanobacterium but was more sensitive than that of the chlorolichen or the chlorobiont. Different responses to dehydration were closely related to cellular osmolarity; osmolarity was comparable between the cyanolichen and a cyanobacterium as well as between a chlorolichen and a green alga. In the cephalodium-possessing lichen, osmolarity and the effect of dehydration on cephalodia were similar to those exhibited by cyanolichens. The green algal part response was similar to those exhibited by chlorolichens. Through the analysis of cellular osmolarity, it was clearly shown that photobionts retain their original properties as free-living organisms even after lichenization.


Subject(s)
Chlorophyta/physiology , Lichens/physiology , Nostoc commune/physiology , Symbiosis , Water/physiology , Lichens/microbiology , Osmotic Pressure , Photosynthesis
8.
Plant Cell Physiol ; 54(8): 1316-25, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23737501

ABSTRACT

Lichens are drought-resistant symbiotic organisms of mycobiont fungi and photobiont green algae or cyanobacteria, and have an efficient mechanism to dissipate excess captured light energy into heat in a picosecond time range to avoid photoinhibition. This mechanism can be assessed as drought-induced non-photochemical quenching (d-NPQ) using time-resolved fluorescence spectroscopy. A green alga Trebouxia sp., which lives within a lichen Ramalina yasudae, is one of the most common green algal photobionts. This alga showed very efficient d-NPQ under desiccation within the lichen thallus, whereas it lost d-NPQ ability when isolated from R. yasudae, indicating the importance of the interaction with the mycobiont for d-NPQ ability. We analyzed the water extracts from lichen thalli that enhanced d-NPQ in Trebouxia. Of several sugar compounds identified in the water extracts by nuclear magnetic resonance (NMR), mass spectrometry (MS) and gas chromatography (GC) analyses, only d-arabitol recovered d-NPQ in isolated Trebouxia to a level similar to that detected for R. yasudae thallus. Other sugar compounds did not help the expression of d-NPQ at the same concentrations. Thus, arabitol is essential for the expression of d-NPQ to dissipate excess captured light energy into heat, protecting the photobiont from photoinhibition. The relationship between mycobionts and photobionts is, therefore, not commensalism, but mutualism with each other, as shown by d-NPQ expression.


Subject(s)
Ascomycota/physiology , Chlorophyta/physiology , Lichens/physiology , Sugar Alcohols/metabolism , Symbiosis , Chlorophyll/metabolism , Chlorophyta/radiation effects , Desiccation , Fluorescence , Lichens/microbiology , Lichens/radiation effects , Light
9.
Plant Cell Physiol ; 53(1): 237-43, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22138100

ABSTRACT

Thylakoid membranes contain two types of quinones, benzoquinone (plastoquinone) and naphthoquinone, which are involved in photosynthetic electron transfer. Unlike the benzoquinone, the chemical species of naphthoquinone present (phylloquinone, menaquinone-4 and 5'-monohydroxyphylloquinone) varies depending on the oxygenic photosynthetic organisms. The green alga Chlamydomonas reinhardtii has been used as a model organism to study the function of the naphthoquinone bound to PSI. However, the level of phylloquinone and the presence of other naphthoquinones in this organism remain unknown. In the present study, we found that 5'-monohydroxyphylloquinone is the predominant naphthoquinone in cell and thylakoid extracts based on the retention time during reverse phase HPLC, absorption and mass spectrometry measurements. It was shown that 5'-monohydroxyphylloquinone is enriched 2.5-fold in the PSI complex as compared with thylakoid membranes but that it is absent from PSI-deficient mutant cells. We also found a small amount of phylloquinone in the cells and in the PSI complex and estimated that accumulated 5'-monohydroxyphylloquinone and phylloquinone account for approximately 90 and 10%, respectively, of the total naphthoquinone content. The ratio of these two naphthoquinones remained nearly constant in the cells and in the PSI complexes from logarithmic and stationary cell growth stages. We conclude that both 5'-monohydroxyphylloquinone and phylloquinone stably co-exist as major and minor naphthoquinones in Chlamydomonas PSI.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Naphthoquinones/metabolism , Photosystem I Protein Complex/metabolism , Vitamin K 1/analogs & derivatives , Cell Proliferation , Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/growth & development , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Mutation/genetics , Naphthoquinones/chemistry , Naphthoquinones/isolation & purification , Vitamin K 1/chemistry , Vitamin K 1/isolation & purification , Vitamin K 1/metabolism
10.
Photosynth Res ; 110(1): 39-48, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21986932

ABSTRACT

A time-resolved fluorescence study of living lichen thalli at 5 K was conducted to clarify the dynamics and mechanism of the effective dissipation of excess light energy taking place in lichen under extreme drought conditions. The decay-associated spectra obtained from the experiment at 5 K were characterized by a drastically sharpened spectral band which could not be resolved by experiments at higher temperatures. The present results indicated the existence of two distinct dissipation components of excess light energy in desiccated lichen; one is characterized as rapid fluorescence decay with a time constant of 27 ps in the far-red region that was absent in wet lichen thalli, and the other is recognized as accelerated fluorescence decay in the 685-700 nm spectral region. The former energy-dissipation component with extremely high quenching efficiency is most probably ascribed to the emergence of a rapid quenching state in the peripheral-antenna system of photosystem II (PS II) on desiccation. This is an extremely effective protection mechanism of PS II under desiccation, which lichens have developed to survive in the severely desiccated environments. The latter, which is less efficient at 5 K, might have a supplementary role and take place either in the core antenna of PS II or aggregated peripheral antenna of PS II.


Subject(s)
Energy Transfer/radiation effects , Lichens/radiation effects , Light , Photosystem II Protein Complex/radiation effects , Spectrometry, Fluorescence/methods , Desiccation , Droughts , Japan , Lichens/metabolism , Photosynthesis/radiation effects , Stress, Physiological , Temperature , Time Factors
11.
Plant Cell Physiol ; 50(4): 879-88, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19304738

ABSTRACT

In order to clarify the role of symbiotic association in desiccation tolerance of photosynthetic partners in lichens, responses to air-drying and hypertonic treatments in a green-algal lichen (a chlorolichen, Ramalina yasudae Räsänen) and its green algal photobiont (freshly released and cultured Trebouxia sp.) were studied. Responses to dehydration in the isolated Trebouxia sp. were different from those in the lichen, R. yasudae, i.e. (i) the PSII reaction was totally inhibited in R. yasudae when photosynthesis was completely inhibited by desiccation, but it remained partially active in isolated Trebouxia sp; (ii) dehydration-induced quenching of PSII fluorescence was less in the isolated Trebouxia sp. compared with that in R. yasudae, suggesting that a substance(s) or a mechanism(s) to dissipate absorbed light energy to heat was lost by the isolation of the photobiont; and (iii) the air-dried isolated Trebouxia sp. showed a higher sensitivity to photoinhibition than R. yasudae. These results support the idea that association of the photobionts with the mycobionts increases tolerance to photoinhibition under drying conditions.


Subject(s)
Chlorophyta/physiology , Desiccation , Lichens/physiology , Photosynthesis , Chlorophyta/radiation effects , Fluorescence , Lichens/radiation effects , Light , Photosystem II Protein Complex/metabolism , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...