Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 350: 141117, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184079

ABSTRACT

Among numerous disinfection by-products (DBP) forming during aqueous chlorination nitrogen containing species are of special concern due to their toxicological properties. Nevertheless, corresponding reaction products of these natural and anthropogenic compounds are not sufficiently studied so far. An interesting reaction involves dealkylation of the substituted amine moiety. Here we present the results of the comparative study of one-electron oxidation and aqueous chlorination of several aliphatic and aromatic amines. The reaction products were reliably identified with gas chromatography - high resolution mass spectrometry (GC-HRMS), high pressure liquid chromatography - electrospray ionization high resolution mass spectrometry HPLC-ESI/HRMS), and electrochemistry - electrospray ionization high resolution mass spectrometry (EC-ESI/HRMS). Certain similarities dealing with the formation of the corresponding aldehydes and substitution of alkyl groups at the nitrogen atom for hydrogen were shown for the studied processes. The mechanism of the substituted amines' aqueous chlorination involving one-electron oxidation is proposed and confirmed by the array of the observed reaction products. Alternative reactions taking place in conditions of aqueous chlorination, i.e. aromatic electrophilic substitution, may successfully compete with dealkylation and produce major products.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection/methods , Water , Amines , Halogenation , Dealkylation , Nitrogen/analysis , Water Purification/methods , Water Pollutants, Chemical/analysis , Chlorine/chemistry , Disinfectants/chemistry
2.
Sci Rep ; 11(1): 19074, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561520

ABSTRACT

Sixteen priority polycyclic aromatic hydrocarbons (PAHs) were qualitatively and quantitatively assessed by high-performance liquid chromatography with fluorescence detection in snow samples collected at 46 sites of Arkhangelsk as a world's largest city above 64 degrees north latitude. The average, maximum and minimum PAH concentrations in snow were 168, 665, and 16 ng/kg, respectively. The average toxic equivalent value in benzo(a)pyrene units was 3.6 ng/kg, which is three-fold lower than the established maximum permissible concentration and considered an evidence of a low/moderate level of snow pollution with PAHs. The pollution origin was assessed using specific markers based on PAHs ratios in the studied samples. The pyrogenic sources of PAH emission were predominate, whereas the significant contributions from both transport and solid fuel combustion were observed. Benzo(a)pyrene concentrations are highly correlated with the levels of other PAHs with higher molecular weights.

3.
Environ Pollut ; 265(Pt B): 114885, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32497945

ABSTRACT

Anthropogenic pollution of the Arctic atmosphere is of great interest due to the vulnerability of the Arctic ecosystems, as well as the processes of global transport and accumulation of atmospheric aerosols at high latitudes under conditions of cold climate. The present work throws light upon chemical composition of Arctic snow as a natural deposition matrix for atmospheric semi-volatile pollutants taken from the northernmost Arctic archipelago - Franz Josef Land, which is least affected by local sources of pollution and being a unique unstudied environmental object. The used methodology involved the liquid-liquid extraction of snow samples with dichloromethane and combination of targeted and non-targeted analyses of semi-volatile organic compounds with comprehensive two-dimensional gas chromatography - high-resolution mass spectrometry. While almost none of the known priority pollutants (except three dialkylphthalates) were identified in the studied samples, non-targeted screening revealed a specific class of biomass burning biomarkers - fatty amides with oleamide being the major component among them. Some peculiar organic pollutants (N,N-dimethylcyclohexylamine and N,N-dimethylbenzylamine) were identified in few samples. First results on the semi volatile pollutants in Franz Joseph Land snow were obtained using the most reliable GC × GC-HRMS non-target analysis.


Subject(s)
Air Pollutants/analysis , Snow , Arctic Regions , Atmosphere , Ecosystem , Environmental Monitoring
4.
Environ Pollut ; 239: 416-427, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29679939

ABSTRACT

Environmental contamination of the Arctic has widely been used as a worldwide pollution marker. Various classes of organic pollutants such as pesticides, personal care products, PAHs, flame retardants, biomass burning markers, and many others emerging contaminants have been regularly detected in Arctic samples. Although numerous papers have been published reporting data from the Canadian, Danish, and Norwegian Arctic regions, the environmental situation in Russian Arctic remains mostly underreported. Snow analysis is known to be used for monitoring air pollution in the regions with cold climate in both short-term and long-term studies. This paper presents the results of a nontargeted study on the semivolatile organic compounds detected and identified in snow samples collected at the Russian Artic Archipelago Novaya Zemlya in June 2016. Gas chromatography coupled to a high-resolution time-of-flight mass spectrometer enabled the simultaneous detection and quantification of a variety of pollutants including those from the US Environmental Protection Agency (EPA) priority pollutants list, emerging contaminants (plasticizers, flame retardants-only detection), as well as the identification of novel Arctic organic pollutants, (e.g., fatty acid amides and polyoxyalkanes). The possible sources of these novel pollutants are also discussed. GC-HRMS enabled the detection and identification of emerging contaminants and novel organic pollutants in the Arctic, e.g., fatty amides and polyoxyalkanes.


Subject(s)
Environmental Monitoring , Environmental Pollutants/analysis , Snow/chemistry , Volatile Organic Compounds/analysis , Arctic Regions , Canada , Environmental Pollution/analysis , Environmental Pollution/statistics & numerical data , Flame Retardants/analysis , Islands , Norway , Pesticides/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Russia
5.
Carbohydr Polym ; 163: 54-61, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28267518

ABSTRACT

The controlled degradation of solid powders of chitin and chitosan stimulated by electron-beam plasma (EBP) was experimentally studied. Crab shell chitin and chitosan were used as original substances. The non-equilibrium low temperature EBP was generated by injecting an electron beam into a gaseous medium. Chitooligosaccharides with Mw=800-2000Da and polydispersion 1.5-2.5 were formed due to the EBP-treatment of chitin and chitosan. The ß-1,4 glycosidic bounds in original polymers degrade under the action of active oxygen species produced in the EBP. Low molecular weight products of chitosan inhibited the growth of various yeast-like and filamentous fungi at minimum inhibitory concentration 500mcg/ml. By optimizing the treatment conditions and using special techniques of reaction volume formation the 95% yield of chitooligosaccharides was obtained after 2min whereas the conventional chemical hydrolysis usually takes several days. The EBP-stimulated hydrolysis is promising for effective polysaccharides degradation and can be competitive with traditional technologies.


Subject(s)
Chitin/chemistry , Chitosan/chemistry , Animals , Brachyura , Hydrolysis , Molecular Weight , Oligosaccharides
6.
Chemosphere ; 174: 66-75, 2017 May.
Article in English | MEDLINE | ID: mdl-28160679

ABSTRACT

1,1-Dimethylhydrazine is used as a fuel for carrier rockets in the majority of countries implementing space exploration programs. Being highly reactive, 1,1-dimethylhydrazine easily undergoes oxidative transformation with the formation of a number of toxic, mutagenic, and teratogenic compounds. The use of high-resolution mass spectrometry for the study of the reaction of 1,1-dimethylhydrazine oxidation with hydrogen peroxide in aqueous solution allowed us to find hundreds of nitrogen-containing products of the CHN and CHNO classes, formed via radical processes. The vast majority of the compounds have not been previously considered as possible products of the transformation of rocket fuel. We have shown that the oxidation of 1,1-dimethylhydrazine proceeds in two stages, with the formation of a great number of complex unstable intermediates that contain up to ten nitrogen atoms. These intermediates are subsequently converted into final reaction products with a concomitant decrease in the average molecular weight. The intermediates and final products of the oxidative transformation of 1,1-dimethylhydrazine were characterised on the basis of their elemental composition using van Krevelen diagrams and possible compounds corresponding to the most intense peaks in the mass spectra were proposed. The data obtained are indicative of the presence of the following classes of heterocyclic nitrogen-containing compounds among the oxidation products: imines, piperidines, pyrrolidines, dihydropyrazoles, dihydroimidazoles, triazoles, aminotriazines, and tetrazines. The results obtained open up possibilities for the targeted search and identification of new toxic products of the degradation of rocket fuel and, as a result, a more adequate assessment of the ecological consequences of space-rocket activity.


Subject(s)
Dimethylhydrazines/analysis , Dimethylhydrazines/chemistry , Hydrogen Peroxide/chemistry , Mass Spectrometry/methods , Oxidants/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...