Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Molecules ; 25(2)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31963203

ABSTRACT

Acrylamide (AA) toxicity remains an interesting subject in toxicological research. The aim of the research performed in this paper was to determine mechanisms of cyto- and genotoxic effects of AA on the human colon adenocarcinoma cell line Caco-2, to estimate the inhibitory concentration (IC)50 values in cell viability assays, to measure the basal and oxidative DNA damage as well as the oxidative stress leading to apoptosis, and to assess the morphological changes in cells using microscopic methods. It has been proven that AA induces cytotoxic and genotoxic effects on Caco-2 cells. Higher cytotoxic activity was gained in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay compared with the PrestoBlue assay, with IC50 values of 5.9 and 8.9 mM after 24 h exposure, respectively. In the single-cell gel electrophoresis assay, the greatest DNA damage was caused by the highest concentration of acrylamide equal to 12.5 mM (89.1% ± 0.9%). AA also induced oxidative DNA damage and generated reactive oxygen species (ROS), which was concentration dependent and correlated with the depletion of mitochondrial membrane potential and apoptosis induction. In the microscopic staining of cells, AA in the dosage close to the IC50 induced morphological changes typical for apoptosis. Taken together, these results demonstrate that AA has a pro-oxidative effect on Caco-2 cells, leading to apoptotic cell death.


Subject(s)
Acrylamide/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , DNA Damage/drug effects , Oxidative Stress/drug effects , Caco-2 Cells , Cell Proliferation/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects
2.
Crit Rev Food Sci Nutr ; 60(10): 1677-1692, 2020.
Article in English | MEDLINE | ID: mdl-30907623

ABSTRACT

Nowadays acrylamide is known not only as synthetic material used in industry, but also as carcinogenic, cyto- and genotoxic compound which forms during heat-induced process (due to Maillard reaction) mostly in foodstuff such as potato, bakery, plant derivatives products and coffee. The International Agency for Research on Cancer in 1994 declared acrylamide as a probable carcinogenic agent in humans. After metabolic process, acrylamide is distributed to all organs and tissues in human body. Acrylamide is classified as human neurotoxin, because this effect was observed in humans occupationally exposed to this compound. Acrylamide was found to cause apoptosis by mitochondrial dysfunction. Methods of acrylamide inactivation by microorganisms and bioactive diet compounds have also been reviewed. Moreover, there is still deficit of the European Union legal regulation concerning acrylamide mitigation strategies in food. Regulation 2017/2158 from 20 November 2017 is a step in the right direction when it comes to ensuring food safety and maximum levels of acrylamide in foodstuffs, however when exceeding those, it should result in elimination of such food from the market.


Subject(s)
Acrylamide/metabolism , Acrylamide/toxicity , Food Contamination/legislation & jurisprudence , Food Industry/legislation & jurisprudence , Diet , European Union , Humans
3.
Crit Rev Food Sci Nutr ; 59(22): 3579-3596, 2019.
Article in English | MEDLINE | ID: mdl-30311772

ABSTRACT

Heterocyclic aromatic amines, acrylamide, 5-hydroxymethylfurfural, furan, polycyclic aromatic hydrocarbons, nitrosamines, acrolein, chloropropanols and chloroesters are generated toxicants formed in some foodstuffs, mainly starchy and protein-rich food during thermal treatment such as frying, roasting and baking. The formation of these chemical compounds is associated with development of aromas, colors and flavors. One of the challenges facing the food industry today is to minimize these toxicants without adversely affecting the positive attributes of thermal processing. To achieve this objective, it is essential to have a detailed understanding of the mechanism of formation of these toxicants in processed foods. All reviewed toxicants in that paper are classified as probable, possible or potential human carcinogens and have been proven to be carcinogenic in animal studies. The purpose of that review is to summarize some of the most frequent occurring heat-generated food toxicants during conventional heating, their metabolism and carcinogenicity. Moreover, conventional and microwave heating were also compared as two different heat treatment methods, especially how they change food chemical composition and which thermal food toxicants are formed during specific method.


Subject(s)
Cooking , Food , Hazardous Substances , Animals , Food/toxicity , Food Analysis , Hazardous Substances/analysis , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...