Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3735, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702308

ABSTRACT

Color morphing refers to color change in response to an environmental stimulus. Photochromic materials allow color morphing in response to light, but almost all photochromic materials suffer from degradation when exposed to moist/humid environments or harsh chemical environments. One way of overcoming this challenge is by imparting chemical shielding to the color morphing materials via superomniphobicity. However, simultaneously imparting color morphing and superomniphobicity, both surface properties, requires a rational design. In this work, we systematically design color morphing surfaces with superomniphobicity through an appropriate combination of a photochromic dye, a low surface energy material, and a polymer in a suitable solvent (for one-pot synthesis), applied through spray coating (for the desired texture). We also investigate the influence of polymer polarity and material composition on color morphing kinetics and superomniphobicity. Our color morphing surfaces with effective chemical shielding can be designed with a wide variety of photochromic and thermochromic pigments and applied on a wide variety of substrates. We envision that such surfaces will have a wide range of applications including camouflage soldier fabrics/apparel for chem-bio warfare, color morphing soft robots, rewritable color patterns, optical data storage, and ophthalmic sun screening.

2.
Adv Sci (Weinh) ; 11(10): e2308101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38233209

ABSTRACT

While there are many droplet manipulation techniques, all of them suffer from at least one of the following drawbacks - complex fabrication or complex equipment or liquid loss. In this work, a simple and portable technique is demonstrated that enables on-demand, contact-less and loss-less manipulation of liquid droplets through a combination of contact electrification and slipperiness. In conjunction with numerical simulations, a quantitative analysis is presented to explain the onset of droplet motion. Utilizing the contact electrification technique, contact-less and loss-less manipulation of polar and non-polar liquid droplets on different surface chemistries and geometries is demonstrated. It is envisioned that the technique can pave the way to simple, inexpensive, and portable lab on a chip and point of care devices.

3.
Nanomaterials (Basel) ; 13(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37764603

ABSTRACT

Cr(VI) compounds are bioaccumulative and highly toxic pollutants, and there is a need for simple and fast detection methods to monitor their trace levels. In this work, we developed a Eu3+ complex-based fluorescence sensor to easily detect Cr(VI) in water droplets. Our sensor consists of a nanofibrous membrane electrospun with a blend of polyvinylidene fluoride (PVDF), silica particles, and Eu3+ complex. Upon modifying the membrane surface with fluoroalkyl chemistry, the sensor displayed superhydrophobicity. When a water droplet with Cr(VI) was placed on such a superhydrophobic fluorescence sensor, the overlapping absorption of Cr(VI) and Eu3+ complex facilitated the inner filter effect, allowing the selective detection of Cr(VI) down to 0.44 µM (i.e., 45.76 µg L-1). We proposed and designed of new inexpensive and fast sensor for the detection of Cr(VI).

4.
J Mech Behav Biomed Mater ; 110: 103895, 2020 10.
Article in English | MEDLINE | ID: mdl-32957201

ABSTRACT

OBJECTIVE: The objective of this study is to evaluate the impact of superhydrophobic coating on the hemodynamics and turbulence characteristics of a bileaflet mechanical valve in the context of evaluating blood damage potential. METHODS: Two 3D printed bileaflet mechanical valves were hemodynamically tested in a pulse duplicator under physiological pressure and flow conditions. The leaflets of one of the two valves were sprayed with a superhydrophobic coating. Particle Image Velocimetry was performed. Pressure gradients (PG), effective orifice areas (EOA), Reynolds shear stresses (RSS) and instantaneous viscous shear stresses (VSS) were calculated. RESULTS: (a) Without SH coating, the PG was found to be 14.53 ± 0.7 mmHg and EOA 1.44 ± 0.06 cm2. With coating, the PG obtained was 15.21 ± 1.7 mmHg and EOA 1.39 ± 0.07 cm2; (b) during peak systole, the magnitude of RSS with SH coating (110Pa) exceeded that obtained without SH coating (40 Pa) with higher probabilities to develop higher RSS in the immediate wake of the leaflet; (c) The magnitudes range of instantaneous VSS obtained with SH coating were slightly larger than those obtained without SH coating (7.0 Pa versus 5.0 Pa). CONCLUSION: With Reynolds Shear Stresses and instantaneous Viscous Shear Stresses being correlated with platelet damage, SH coating did not lead to their decrease. While SH coating is known to improve surface properties such as reduced platelet or clot adhesion, the relaxation of the slip condition does not necessarily improve overall hemodynamic performance for the bileaflet mechanical valve design.


Subject(s)
Heart Valve Prosthesis , Heart Valves , Hemodynamics , Hydrodynamics , Models, Cardiovascular , Prosthesis Design , Stress, Mechanical
5.
Environ Sci Technol ; 54(16): 10333-10341, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32702974

ABSTRACT

Membrane distillation (MD) has been receiving considerable attention as a promising technology for desalinating industrial wastewaters. While hydrophobic membranes are essential for the process, increasing membrane surface hydrophobicity generally leads to the reduction of water vapor flux. In this study, we investigate the mechanisms responsible for this trade-off relation in MD. We prepared hydrophobic membranes with different degrees of wetting resistance through coating quartz fiber membranes with a series of alkylsilane molecules while preserving the fiber structures. A trade-off between wetting resistance and water vapor flux was observed in direct-contact MD experiments, with the least-wetting-resistant membrane exhibiting twice as high vapor flux as the most wetting-resistant membrane. Electrochemical impedance analysis, combined with fluorescence microscopy, elucidated that a lower wetting resistance (still water-repelling) allows deeper penetration of the liquid-air interfaces into the membrane, resulting in an increased interfacial area and therefore a larger evaporative vapor flux. Finally, we performed osmotic distillation experiments employing anodized alumina membranes that possess straight nanopores with different degrees of wetting resistance, observed no trade-off, and substantiated this proposed mechanism. Our study provides a guideline to tailor the membrane surface wettability to ensure stable MD operations while maximizing the water recovery rate.


Subject(s)
Distillation , Water Purification , Membranes, Artificial , Steam , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...