Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Med Sci ; 15(9): 849-858, 2018.
Article in English | MEDLINE | ID: mdl-30008596

ABSTRACT

Prenatal stress (PS) induces learning deficits and anxiety-like behavior in mouse pups by increasing corticosterone levels in the dam. We examined the effects of maternal chewing during PS on arginine vasopressin (AVP) mRNA expression in the dams and on neurogenesis, brain-derived neurotrophic factor (BDNF) mRNA expression, learning deficits and anxiety-like behavior in the offspring. Mice were divided into control, stress and stress/chewing groups. Pregnant mice were exposed to restraint stress beginning on day 12 of pregnancy and continuing until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint stress. PS significantly increased AVP mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus in the dams. PS also impaired learning ability, suppressed neurogenesis and BDNF mRNA expression in the hippocampus, and induced anxiety-like behavior in the offspring. Chewing during PS prevented the PS-induced increase in AVP mRNA expression of the PVN in the dams. Chewing during PS significantly attenuated the PS-induced learning deficits, anxiety-like behavior, and suppression of neurogenesis and BDNF mRNA expression in the hippocampus of the offspring. Chewing during PS prevented the increase in plasma corticosterone in the dam by inhibiting the hypothalamic-pituitary-adrenal axis activity, and attenuated the attenuated the PS-induced suppression of neurogenesis and BDNF expression in the hippocampus of the pups, thereby ameliorating the PS-induced learning deficits and anxiety-like behavior. Chewing during PS is an effective stress-coping method for the dam to prevent PS-induced deficits in learning ability and anxiety-like behavior in the offspring.


Subject(s)
Hypothalamo-Hypophyseal System/physiology , Mastication , Pituitary-Adrenal System/physiology , Prenatal Exposure Delayed Effects , Stress, Psychological , Animals , Anxiety , Behavior, Animal , Corticosterone , Female , Hippocampus , Male , Mice , Neurogenesis , Pregnancy
2.
Arch Oral Biol ; 74: 21-27, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27846401

ABSTRACT

OBJECTIVE: Tooth loss induced neurological alterations through activation of a stress hormone, corticosterone. Age-related hippocampal morphological and functional changes were accelerated by early tooth loss in senescence-accelerated mouse prone 8 (SAMP8). In order to explore the mechanism underlying the impaired hippocampal function resulting from early masticatory dysfunction due to tooth loss, we investigated the effects of early tooth loss on plasma corticosterone levels, learning ability, neurogenesis, and synaptophysin expression in the hippocampus later in life of SAMP8 mice. DESIGN: We examined the effects of tooth loss soon after tooth eruption (1 month of age) on plasma corticosterone levels, learning ability in the Morris water maze, newborn cell proliferation, survival and differentiation in the hippocampal dentate gyrus, and synaptophysin expression in the hippocampus of aged (8 months of age) SAMP8 mice. RESULTS: Aged mice with early tooth loss exhibited increased plasma corticosterone levels, hippocampus-dependent learning deficits in the Morris water maze, decreased cell proliferation, and cell survival in the dentate gyrus, and suppressed synaptophysin expression in the hippocampus. Newborn cell differentiation in the hippocampal dentate gyrus, however, was not affected by early tooth loss. CONCLUSION: These findings suggest that learning deficits in aged SAMP8 mice with tooth loss soon after tooth eruption are associated with suppressed neurogenesis and decreased synaptophysin expression resulting from increased plasma corticosterone levels, and that long-term tooth loss leads to impaired cognitive function in older age.


Subject(s)
Hippocampus/physiopathology , Maze Learning/physiology , Neurogenesis/physiology , Synaptophysin/physiology , Tooth Loss/physiopathology , Age Factors , Animals , Body Weight , Cell Differentiation/physiology , Cell Proliferation/physiology , Cell Survival , Cognition/physiology , Corticosterone/blood , Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Dentate Gyrus/physiopathology , Hippocampus/cytology , Hippocampus/metabolism , Immunohistochemistry , Male , Mice , Stress, Psychological/physiopathology , Synaptophysin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...