Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Sci Rep ; 14(1): 9917, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38730038

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) remains a serious health threat in Indonesia. In particular, the CRF01_AE viruses were the predominant HIV-1 strains in various cities in Indonesia. However, information on the dynamic transmission characteristics and spatial-temporal transmission of HIV-1 CRF01_AE in Indonesia is limited. Therefore, the present study examined the spatial-temporal transmission networks and evolutionary characteristics of HIV-1 CRF01_AE in Indonesia. To clarify the epidemiological connection between CRF01_AE outbreaks in Indonesia and the rest of the world, we performed phylogenetic studies on nearly full genomes of CRF01_AE viruses isolated in Indonesia. Our results showed that five epidemic clades, namely, IDN clades 1-5, of CRF01_AE were found in Indonesia. To determine the potential source and mode of transmission of CRF01_AE, we performed Bayesian analysis and built maximum clade credibility trees for each clade. Our study revealed that CRF01_AE viruses were commonly introduced into Indonesia from Southeast Asia, particularly Thailand. The CRF01_AE viruses might have spread through major pandemics in Asian countries, such as China, Vietnam, and Laos, rather than being introduced directly from Africa in the early 1980s. This study has major implications for public health practice and policy development in Indonesia. The contributions of this study include understanding the dynamics of HIV-1 transmission that is important for the implementation of HIV disease control and prevention strategies in Indonesia.


Subject(s)
HIV Infections , HIV-1 , Phylogeny , Spatio-Temporal Analysis , Indonesia/epidemiology , HIV-1/genetics , HIV-1/classification , Humans , HIV Infections/transmission , HIV Infections/virology , HIV Infections/epidemiology , Bayes Theorem , Genome, Viral
2.
Microbiol Spectr ; 12(4): e0285923, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38415690

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes several host proteases to cleave the spike (S) protein to enter host cells. SARS-CoV-2 S protein is cleaved into S1 and S2 subunits by furin, which is closely involved in the pathogenicity of SARS-CoV-2. However, the effects of the modulated protease cleavage activity due to S protein mutations on viral replication and pathogenesis remain unclear. Herein, we serially passaged two SARS-CoV-2 strains in Vero cells and characterized the cell-adapted SARS-CoV-2 strains in vitro and in vivo. The adapted strains showed high viral growth, effective S1/S2 cleavage of the S protein, and low pathogenicity compared with the wild-type strain. Furthermore, the viral growth and S1/S2 cleavage were enhanced by the combination of the Δ68-76 and H655Y mutations using recombinant SARS-CoV-2 strains generated by the circular polymerase extension reaction. The recombinant SARS-CoV-2 strain, which contained the mutation of the adapted strain, showed increased susceptibility to the furin inhibitor, suggesting that the adapted SARS-CoV-2 strain utilized furin more effectively than the wild-type strain. Pathogenicity was attenuated by infection with effectively cleaved recombinant SARS-CoV-2 strains, suggesting that the excessive cleavage of the S proteins decreases virulence. Finally, the high-growth-adapted SARS-CoV-2 strain could be used as the seed for a low-cost inactivated vaccine; immunization with this vaccine can effectively protect the host from SARS-CoV-2 variants. Our findings provide novel insights into the growth and pathogenicity of SARS-CoV-2 in the evolution of cell-cell transmission. IMPORTANCE: The efficacy of the S protein cleavage generally differs among the SARS-CoV-2 variants, resulting in distinct viral characteristics. The relationship between a mutation and the entry of SARS-CoV-2 into host cells remains unclear. In this study, we analyzed the sequence of high-growth Vero cell-adapted SARS-CoV-2 and factors determining the enhancement of the growth of the adapted virus and confirmed the characteristics of the adapted strain by analyzing the recombinant SARS-CoV-2 strain. We successfully identified mutations Δ68-76 and H655Y, which enhance viral growth and the S protein cleavage by furin. Using recombinant viruses enabled us to conduct a virus challenge experiment in vivo. The pathogenicity of SARS-CoV-2 introduced with the mutations Δ68-76, H655Y, P812L, and Q853L was attenuated in hamsters, indicating the possibility of the attenuation of excessive cleaved SARS-CoV-2. These findings provide novel insights into the infectivity and pathogenesis of SARS-CoV-2 strains, thereby significantly contributing to the field of virology.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Chlorocebus aethiops , Humans , Vero Cells , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Furin/metabolism
3.
Food Environ Virol ; 15(4): 342-354, 2023 12.
Article in English | MEDLINE | ID: mdl-37898959

ABSTRACT

Growing evidence shed light on the importance of wastewater-based epidemiology (WBE) during the pandemic, when the patients rarely visited the clinics despite the fact that the infections were still prevalent in the community as before. The abundance of infections in the community poses a constant threat of the emergence of new epidemic strains. Herein, we investigated enteric viruses in raw sewage water (SW) from Japan's Tohoku region and compared them to those from the Kansai region to better understand the circulating strains and their distribution across communities during the COVID-19 pandemic. Raw SW was collected between 2019 and 2022, concentrated by polyethylene-glycol-precipitation method, and investigated for major AGE viruses by RT-PCR. Sequence-based analyses were used to assess genotypes and evolutionary relationships. The most commonly detected enteric virus was rotavirus A (RVA) at 63.8%, followed by astrovirus (AstV) at 61.1%, norovirus (NoV) GII and adenovirus (AdV) at 33.3%, sapovirus (SV) at 25.0%, enterovirus (EV) at 19.4%, and NoV GI at 13.9%. The highest prevalence (46.0%) was found in the spring. Importantly, enteric viruses did not decline during the pandemic. Rather, several strains like NoV GII.2, DS-1-like human G3 (equine) RVA, MLB1 AstV, and different F41 HAdV emerged throughout the pandemic and spread widely over the Tohoku and Kansai regions. Tohoku's detection rate remained lower than that of the Kansai area (36 vs 58%). This study provides evidence for the emergence and spread of enteric viruses during the pandemic.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Norovirus , RNA Viruses , Rotavirus , Viruses , Humans , Animals , Horses , Wastewater , Pandemics , COVID-19/epidemiology , Viruses/genetics , Rotavirus/genetics , Enterovirus/genetics , Norovirus/genetics , Sewage , Water , Feces
4.
J Virol ; 97(10): e0049223, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37732784

ABSTRACT

IMPORTANCE: The stabilities of transgenes in RNA virus vectors differ between the genes of interest, but the molecular mechanisms determining genetic stability remain unknown. This study demonstrated that the stability of a transgene was affected by the nucleotide composition, and altering the codon usage of transgenes to resemble that of the viral genome significantly increased transgene stability in double-stranded RNA virus vectors. The virus-like codon modification strategy enabled generation of stable rotavirus and mammalian orthoreovirus vectors, which could be developed as machinery for gene delivery to the intestines and/or respiratory organs. This technology has further potential to be expanded to other RNA viruses.


Subject(s)
Double Stranded RNA Viruses , RNA Viruses , Animals , Double Stranded RNA Viruses/genetics , Transgenes , Genome, Viral , RNA Viruses/genetics , Codon/genetics , Genetic Engineering , Genetic Vectors/genetics , Mammals/genetics
5.
Virus Res ; 334: 199176, 2023 09.
Article in English | MEDLINE | ID: mdl-37473963

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has necessitated the global development of countermeasures since its outbreak. However, current therapeutics and vaccines to stop the pandemic are insufficient and this is mainly because of the emergence of resistant variants, which requires the urgent development of new countermeasures, such as antiviral drugs. Replicons, self-replicating RNAs that do not produce virions, are a promising system for this purpose because they safely recreate viral replication, enabling antiviral screening in biosafety level (BSL)-2 facilities. We herein constructed three pCC2Fos-based RNA replicons lacking some open reading frames (ORF) of SARS-CoV-2: the Δorf2-8, Δorf2.4, and Δorf2 replicons, and validated their replication in Huh-7 cells. The functionalities of the Δorf2-8 and Δorf2.4 replicons for antiviral drug screening were also confirmed. We conducted puromycin selection following the construction of the Δorf2.4-puro replicon by inserting a puromycin-resistant gene into the Δorf2.4 replicon. We observed the more sustained replication of the Δorf2.4-puro replicon by puromycin pressure. The present results will contribute to the establishment of a safe and useful replicon system for analyzing SARS-CoV-2 replication mechanisms as well as the development of novel antiviral drugs in BSL-2 facilities.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , SARS-CoV-2/genetics , COVID-19/genetics , Drug Evaluation, Preclinical , Containment of Biohazards , Virus Replication , Replicon , Puromycin/pharmacology
6.
Sci Rep ; 13(1): 11610, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463955

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe acute respiratory symptoms in humans. Controlling the coronavirus disease pandemic is a worldwide priority. The number of SARS-CoV-2 studies has dramatically increased, and the requirement for analytical tools is higher than ever. Here, we propose monolayered-intestinal epithelial cells (IECs) derived from human induced pluripotent stem cells (iPSCs) instead of three-dimensional cultured intestinal organoids as a suitable tool to study SARS-CoV-2 infection. Differentiated IEC monolayers express high levels of angiotensin-converting enzyme 2 and transmembrane protease serine 2 (TMPRSS2), host factors essential for SARS-CoV-2 infection. SARS-CoV-2 efficiently grows in IEC monolayers. Using this propagation system, we confirm that TMPRSS2 inhibition blocked SARS-CoV-2 infection in IECs. Hence, our iPSC-derived IEC monolayers are suitable for SARS-CoV-2 research under physiologically relevant conditions.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , Humans , SARS-CoV-2 , Epithelial Cells , Intestines
7.
Food Environ Virol ; 15(2): 176-191, 2023 06.
Article in English | MEDLINE | ID: mdl-37058225

ABSTRACT

Viruses remain the leading cause of acute gastroenteritis (AGE) worldwide. Recently, we reported the abundance of AGE viruses in raw sewage water (SW) during the COVID-19 pandemic, when viral AGE patients decreased dramatically in clinics. Since clinical samples were not reflecting the actual state, it remained important to determine the circulating strains in the SW for preparedness against impending outbreaks. Raw SW was collected from a sewage treatment plant in Japan from August 2018 to March 2022, concentrated by polyethylene-glycol-precipitation method, and investigated for major gastroenteritis viruses by RT-PCR. Genotypes and evolutionary relationships were evaluated through sequence-based analyses. Major AGE viruses like rotavirus A (RVA), norovirus (NoV) GI and GII, and astrovirus (AstV) increased sharply (10-20%) in SW during the COVID-19 pandemic, though some AGE viruses like sapovirus (SV), adenovirus (AdV), and enterovirus (EV) decreased slightly (3-10%). The prevalence remained top in the winter. Importantly, several strains, including G1 and G3 of RVA, GI.1 and GII.2 of NoV, GI.1 of SV, MLB1 of AstV, and F41 of AdV, either emerged or increased amid the pandemic, suggesting that the normal phenomenon of genotype changing remained active over this time. This study crucially presents the molecular characteristics of circulating AGE viruses, explaining the importance of SW investigation during the pandemic when a clinical investigation may not produce the complete scenario.


Subject(s)
COVID-19 , Enterovirus Infections , Enterovirus , Gastroenteritis , Norovirus , RNA Viruses , Rotavirus , Sapovirus , Viruses , Humans , Wastewater , Pandemics , Sewage , Viruses/genetics , Rotavirus/genetics , Norovirus/genetics , Sapovirus/genetics , Enterovirus Infections/epidemiology , Adenoviridae/genetics , Genotype , Phylogeny , Feces
8.
J Virol ; 97(1): e0186122, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36598201

ABSTRACT

Rotavirus (RV), the most common cause of gastroenteritis in children, carries a high economic and health burden worldwide. RV encodes six structural proteins and six nonstructural proteins (NSPs) that play different roles in viral replication. NSP4, a multifunctional protein involved in various viral replication processes, has two conserved N-glycosylation sites; however, the role of glycans remains elusive. Here, we used recombinant viruses generated by a reverse genetics system to determine the role of NSP4 N-glycosylation during viral replication and pathogenesis. The growth rate of recombinant viruses that lost one glycosylation site was as high as that of the wild-type virus. However, a recombinant virus that lost both glycosylation sites (glycosylation-defective virus) showed attenuated replication in cultured cell lines. Specifically, replications of glycosylation-defective virus in MA104 and HT29 cells were 10- and 100,000-fold lower, respectively, than that of the wild-type, suggesting that N-glycosylation of NSP4 plays a critical role in RV replication. The glycosylation-defective virus showed NSP4 mislocalization, delay of cytosolic Ca2+ elevation, and less viroplasm formation in MA104 cells; however, these impairments were not observed in HT29 cells. Further analysis revealed that assembly of glycosylation-defective virus was severely impaired in HT29 cells but not in MA104 cells, suggesting that RV replication mechanism is highly cell type dependent. In vivo mouse experiments also showed that the glycosylation-defective virus was less pathogenic than the wild-type virus. Taken together, the data suggest that N-glycosylation of NSP4 plays a vital role in viral replication and pathogenicity. IMPORTANCE Rotavirus is the main cause of gastroenteritis in young children and infants worldwide, contributing to 128,500 deaths each year. Here, we used a reverse genetics approach to examine the role of NSP4 N-glycosylation. An N-glycosylation-defective virus showed attenuated and cell-type-dependent replication in vitro. In addition, mice infected with the N-glycosylation-defective virus had less severe diarrhea than mice infected with the wild type. These results suggest that N-glycosylation affects viral replication and pathogenesis. Considering the reduced pathogenicity in vivo and the high propagation rate in MA104 cells, this glycosylation-defective virus could be an ideal live attenuated vaccine candidate.


Subject(s)
Rotavirus Infections , Rotavirus , Viral Nonstructural Proteins , Virus Replication , Animals , Mice , Gastroenteritis/etiology , Gastroenteritis/virology , Glycosylation , Rotavirus/genetics , Rotavirus/metabolism , Rotavirus Infections/complications , Rotavirus Infections/pathology , Rotavirus Infections/virology , Viral Nonstructural Proteins/metabolism , Virus Replication/genetics
9.
AIDS Res Hum Retroviruses ; 39(3): 124-129, 2023 03.
Article in English | MEDLINE | ID: mdl-36656663

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) is characterized by a large degree of genetic variability because of high rates of recombination and mutation, sizable population sizes, and rapid replication. Therefore, this study investigated HIV-1 subtype distribution and the appearance of drug resistance mutations (DRMs) in viruses that are prevalent in Makassar, South Sulawesi, Indonesia. The HIV-1 pol, env, and gag genes were amplified from 63 infected individuals and sequenced for a subtyping analysis. CRF01_AE was identified as the predominant HIV-1 circulating recombinant form (CRF) in Makassar, South Sulawesi, Indonesia. Subtype B and recombinant viruses containing CRF01_AE, CRF02_AG, and/or subtype B gene fragments were also detected. Several major DRMs against non-nucleoside reverse transcriptase inhibitors were found among antiretroviral therapy (ART)-experienced subjects, whereas ART-naive subjects did not possess any transmitted drug resistance. The prevalence of DRMs was very high among ART-experienced subjects; therefore, further surveillance is required in this region.


Subject(s)
HIV Infections , HIV-1 , Humans , HIV-1/genetics , HIV Infections/drug therapy , HIV Infections/epidemiology , Indonesia/epidemiology , Drug Resistance, Viral/genetics , Mutation , Phylogeny , Genotype
10.
J Virol ; 97(1): e0139722, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36602365

ABSTRACT

Rotaviruses (RVs) are nonenveloped viruses that cause gastroenteritis in infants and young children. Sialic acid is an initial receptor, especially for animal RVs, including rhesus RV. Sialic acid binds to the VP8* subunit, a part of the outer capsid protein VP4 of RV. Although interactions between virus and glycan receptors influence tissue and host tropism and viral pathogenicity, research has long been limited to biochemical and structural studies due to the unavailability of an RV reverse genetics system. Here, we examined the importance of sialic acid in RV infections using recombinant RVs harboring mutations in sialic acid-binding sites in VP4 via a simian RV strain SA11-based reverse genetics system. RV VP4 mutants that could not bind to sialic acid had replicated to decreased viral titer in MA104 cells. Wild-type virus infectivity was reduced, while that of VP4 mutants was not affected in sialic acid-deficient cells. Unexpectedly, in vivo experiments demonstrated that VP4 mutants suppressed mouse pups' weight gain and exacerbated diarrhea symptoms compared to wild-type viruses. Intestinal contents enhanced VP4 mutants' infectivity. Thus, possibly via interactions with other unknown receptors and/or intestinal contents, VP4 mutants are more likely than wild-type viruses to proliferate in the murine intestine, causing diarrhea and weight loss. These results suggest that RVs binding sialic acid notably affect viral infection in vitro and viral pathogenesis in vivo. IMPORTANCE Various studies have been conducted on the binding of VP8* and glycans, and the direct interaction between purified VP8* and glycans has been investigated by crystalline structure analyses. Here, we used a reverse genetics system to generate rotaviruses (RVs) with various VP4 mutants. The generated mutant strains clarified the importance of glycan binding in vitro and in vivo. Moreover, even when VP4 mutants could not bind to sialic acid, they were able to bind to an unknown receptor. As RVs evolve, pathogenicity can also be modified by easily altering the glycans to which VP4 binds.


Subject(s)
Rotavirus Infections , Rotavirus , Animals , Mice , Diarrhea , N-Acetylneuraminic Acid/metabolism , Polysaccharides/metabolism , Rotavirus/genetics , Rotavirus/pathogenicity , Rotavirus Infections/pathology , Rotavirus Infections/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Mutation
12.
PLoS One ; 17(10): e0274829, 2022.
Article in English | MEDLINE | ID: mdl-36264936

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global threat. To forestall the pandemic, developing safe and effective vaccines is necessary. Because of the rapid production and little effect on the host genome, mRNA vaccines are attractive, but they have a relatively low immune response after a single dose. Replicon RNA (repRNA) is a promising vaccine platform for safety and efficacy. RepRNA vaccine encodes not only antigen genes but also the genes necessary for RNA replication. Thus, repRNA is self-replicative and can play the role of an adjuvant by itself, which elicits robust immunity. This study constructed and evaluated a repRNA vaccine in which the gene encoding the spike (S) protein of SARS-CoV-2 was inserted into a replicon of yellow fever virus 17D strain. Upon electroporation of this repRNA into baby hamster kidney cells, the S protein and yellow fever virus protein were co-expressed. Additionally, the self-replication ability of repRNA vaccine was confirmed using qRT-PCR, demonstrating its potency as a vaccine. Immunization of C57BL/6 mice with 1 µg of the repRNA vaccine induced specific T-cell responses but not antibody responses. Notably, the T-cell response induced by the repRNA vaccine was significantly higher than that induced by the nonreplicative RNA vaccine in our experimental model. In the future, it is of the essence to optimize vaccine administration methods and improve S protein expression, like protection of repRNA by nanoparticles and evasion of innate immunity of the host to enhance the immune-inducing ability of the repRNA vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines , Yellow fever virus , COVID-19/prevention & control , Mice, Inbred C57BL , Vaccines, Synthetic/genetics , Replicon , RNA/genetics , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Antibodies, Neutralizing , mRNA Vaccines
13.
Vaccines (Basel) ; 10(9)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36146489

ABSTRACT

Infection with viruses belonging to the genus Flavivirus, such as Japanese encephalitis virus (JEV) and dengue virus (DENV), is a worldwide health problem. Vaccines against JEV and DENV are currently available. However, the dengue vaccine possibly increases the risk of severe dengue due to antibody-dependent enhancement (ADE). Moreover, the Japanese encephalitis (JE) vaccine reportedly induces cross-reactive ADE-prone antibodies against DENV, potentially leading to symptomatic dengue. Therefore, it is necessary to eliminate the risk of ADE through vaccination. In this study, we attempted to develop a JE vaccine that does not induce ADE of DENV infection using an epitope modification strategy. We found that an ADE-prone monoclonal antibody cross-reactive to DENV and JEV recognizes the 106th amino acid residue of the E protein of JEV (E-106). The JE DNA vaccine with a mutation at E-106 (E-106 vaccine) induced comparable neutralizing antibody titers against JEV to those induced by the wild-type JE DNA vaccine. Meanwhile, the E-106 vaccine induced 64-fold less cross-reactive ADE-prone antibodies against DENV. The mutation did not compromise the protective efficacy of the vaccine in the lethal JEV challenge experiment. Altogether, the modification of a single amino acid residue identified in this study helped in the development of an ADE-free JE vaccine.

14.
PLoS One ; 17(4): e0261802, 2022.
Article in English | MEDLINE | ID: mdl-35389997

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is transmitted mainly by droplet or aerosol infection; however, it may also be transmitted by contact infection. SARS-CoV-2 that adheres to environmental surfaces remains infectious for several days. We herein attempted to inactivate SARS-CoV-2 and influenza A virus adhering to an environmental surface by dry fogging hypochlorous acid solution and hydrogen peroxide solution. SARS-CoV-2 and influenza virus were air-dried on plastic plates and placed into a test chamber for inactivation by the dry fogging of these disinfectants. The results obtained showed that the dry fogging of hypochlorous acid solution and hydrogen peroxide solution inactivated SARS-CoV-2 and influenza A virus in CT value (the product of the disinfectant concentration and contact time)-dependent manners. SARS-CoV-2 was more resistant to the virucidal effects of aerosolized hypochlorous acid solution and hydrogen peroxide solution than influenza A virus; therefore, higher concentrations of disinfectants or longer contact times were required to inactivate SARS-CoV-2 than influenza A virus. The present results provide important information for the development of a strategy that inactivates SARS-CoV-2 and influenza A virus on environmental surfaces by spatial fogging.


Subject(s)
COVID-19 , Disinfectants , Influenza A virus , Disinfectants/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Hypochlorous Acid/pharmacology , SARS-CoV-2 , Virus Inactivation
15.
Sci Rep ; 11(1): 12987, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155267

ABSTRACT

Dengue virus (DENV), from the genus flavivirus of the family flaviviridae, causes serious health problems globally. Human monoclonal antibodies (HuMAb) can be used to elucidate the mechanisms of neutralization and antibody-dependent enhancement (ADE) of DENV infections, leading to the development of a vaccine or therapeutic antibodies. Here, we generated eight HuMAb clones from an Indonesian patient infected with DENV. These HuMAbs exhibited the typical characteristics of weak neutralizing antibodies including high cross-reactivity with other flaviviruses and targeting of the fusion loop epitope (FLE). However, one of the HuMAbs, 3G9, exhibited strong neutralization (NT50 < 0.1 µg/ml) and possessed a high somatic hyper-mutation rate of the variable region, indicating affinity-maturation. Administration of this antibody significantly prolonged the survival of interferon-α/ß/γ receptor knockout C57BL/6 mice after a lethal DENV challenge. Additionally, Fc-modified 3G9 that had lost their in vitro ADE activity showed enhanced therapeutic potency in vivo and competed strongly with an ADE-prone antibody in vitro. Taken together, the affinity-matured FLE-targeting antibody 3G9 exhibits promising features for therapeutic application including a low NT50 value, potential for treatment of various kinds of mosquito-borne flavivirus infection, and suppression of ADE. This study demonstrates the therapeutic potency of affinity-matured FLE-targeting antibodies.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibody Affinity , Antigens, Viral , Antiviral Agents/pharmacology , Dengue Virus/drug effects , Dengue/virology , Epitopes , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Affinity/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , Antiviral Agents/therapeutic use , Dengue/drug therapy , Dengue/immunology , Dengue Virus/immunology , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Humans , Hybridomas , Mice , Models, Molecular , Neutralization Tests , Protein Conformation , Recombinant Proteins , Structure-Activity Relationship
16.
Virus Res ; 294: 198278, 2021 03.
Article in English | MEDLINE | ID: mdl-33388392

ABSTRACT

The analysis of neutralizing epitope of dengue virus (DENV) is important for the development of an effective dengue vaccine. A potent neutralizing mouse monoclonal antibody named 7F4 was previously reported and, here, we further analyzed the detailed epitope of this antibody. 7F4 recognized a novel conformational epitope close to the N-67 glycan on the envelope protein. This antibody was specific to the DENV that lacks N-67 glycan, including the Mochizuki strain. Interestingly, the Mochizuki strain acquired N-67 glycan by 7F4 selective pressure. Considering that most of the currently circulating DENVs possess N-67 glycan, DENVs may have evolved to escape from antibodies targeting 7F4 epitope, suggesting the potency of this neutralizing epitope. In addition, this study demonstrated the existence of the epitopes close to 7F4 epitope and their crucial role in neutralization. In conclusion, the epitopes close to the N-67 glycan are attractive targets for the dengue vaccine antigen. Further analysis of this epitope is warranted.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Dengue Virus/genetics , Epitopes , Mice , Polysaccharides , Viral Envelope Proteins/genetics
17.
Sci Rep ; 11(1): 2229, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500537

ABSTRACT

The development of specific antiviral compounds to SARS-CoV-2 is an urgent task. One of the obstacles for the antiviral development is the requirement of biocontainment because infectious SARS-CoV-2 must be handled in a biosafety level-3 laboratory. Replicon, a non-infectious self-replicative viral RNA, could be a safe and effective tool for antiviral evaluation. Herein, we generated a PCR-based SARS-CoV-2 replicon. Eight fragments covering the entire SARS-CoV-2 genome except S, E, and M genes were amplified with HiBiT-tag sequence by PCR. The amplicons were ligated and in vitro transcribed to RNA. The cells electroporated with the replicon RNA showed more than 3000 times higher luminescence than MOCK control cells at 24 h post-electroporation, indicating robust translation and RNA replication of the replicon. The replication was drastically inhibited by remdesivir, an RNA polymerase inhibitor for SARS-CoV-2. The IC50 of remdesivir in this study was 0.29 µM, generally consistent to the IC50 obtained using infectious SARS-CoV-2 in a previous study (0.77 µM). Taken together, this system could be applied to the safe and effective antiviral evaluation without using infectious SARS-CoV-2. Because this is a PCR-based and transient replicon system, further improvement including the establishment of stable cell line must be achieved.


Subject(s)
Antiviral Agents/pharmacology , Drug Design , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , CHO Cells , COVID-19 , Chlorocebus aethiops , Cricetulus , Drug Evaluation, Preclinical , Electroporation , Genome, Viral , HEK293 Cells , Humans , Inhibitory Concentration 50 , Kinetics , Open Reading Frames , Polymerase Chain Reaction , RNA, Viral , RNA-Dependent RNA Polymerase , SARS-CoV-2/physiology , Untranslated Regions , Vero Cells , Virion , Virus Replication/drug effects
18.
Acta Med Indones ; 52(4): 366-374, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33377882

ABSTRACT

BACKGROUND: human immunodeficiency virus type 1 (HIV-1) infection is a serious public health threat worldwide. Medan is one example of big cities in Indonesia with a high prevalence of HIV-1 infection; however, quite a limited study had conducted for detecting the circulation of HIV-1 subtypes in Medan. In addition, a serious factor that can implicate the treatment of HIV-1-infected individuals is the emergence of drug resistance mutations. Thus, the information on HIV-1 infection is important to improve the treatment for infected individuals. METHODS: sixty-seven antiretroviral therapy-experienced, HIV-1-infected individuals were recruited for this study. HIV-1 pol genes encoding protease (PR genes) and reverse transcriptase (RT gene), as well as env and gag genes, were amplified from DNA derived from peripheral blood samples. HIV-1 subtyping was conducted to study the dominant HIV-1 subtype circulating in the region. In addition, the emergence of drug resistance mutations was analyzed based on the guidelines published by the International Antiviral Society-United States of America (IAS-USA). RESULTS: the dominant HIV-1 subtype found in Medan was CRF01_AE (77.6%). In addition, another subtype and recombinant viruses such as recombinants between CRF01_AE and subtype B (12.2%), subtype B (4.1%), and CRF02_AG (4.1%) were also found. Drug resistance-associated major mutations were found in 21.6% (8/37) of RT genes and 3.1% (1/32) of PR genes studied. CONCLUSION: our study showed that the dominant subtype found in ART-experienced, HIV-1-infected individuals residing in Medan was CRF01_AE. The emergence of drug resistance mutations in RT and PR genes indicated the importance to monitor the prevalence of drug resistance mutations among HIV-1-infected individuals in Medan.


Subject(s)
Drug Resistance, Viral , Genotype , HIV Infections/virology , HIV-1/genetics , Mutation , Adult , Antiretroviral Therapy, Highly Active , Female , HIV Infections/drug therapy , HIV Reverse Transcriptase/genetics , HIV-1/classification , HIV-1/drug effects , Humans , Indonesia , Male , Young Adult
19.
Germs ; 10(4): 174-183, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33134195

ABSTRACT

INTRODUCTION: The present study investigated the HIV-1 subtype classification in addition to prevalence of drug resistance mutations (DRMs) in antiretroviral therapy (ART)-experienced and ART-naïve residents of Pontianak, West Kalimantan, Indonesia. METHODS: Whole blood samples collected from 30 HIV-1-infected individuals, comprising 19 ART-experienced and 11 ART-naïve individuals, were subjected to RNA and DNA extraction, followed by HIV-1 genes amplification and sequencing analysis. HIV-1 subtyping was classified on viral pol genes encoding reverse transcriptase (RT gene) and protease (PR gene) accompanied by the env and gag genes. DRMs in the RT and PR genes were also analyzed. RESULTS: CRF01_AE was identified as the predominant circulating recombinant form (CRF) of HIV-1 in both ART-experienced and ART-naïve individuals. In addition, CRF02_AG, subtype B, recombinant virus expressing CRF01_AE and subtype B viral genomic fragments, also recombinant virus containing CRF01_AE and CRF02_AG genomic fragments were also identified. Acquired drug resistance (ADR) was identified in 28.5% of ART-experienced individuals, while no transmitted drug resistance was identified in ART-naïve individuals. CONCLUSIONS: This study identified CRF01_AE as the most predominant HIV-1 CRF distributing in Pontianak, Indonesia. The prevalence of ADR is considered to be high; thus, further surveillance is needed in this region.

20.
Infect Dis Rep ; 12(Suppl 1): 8740, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32874468

ABSTRACT

The presence of transmitted drug resistance (TDR) in human immunodeficiency virus type 1 (HIV-1) infected individuals naive to antiretroviral therapy, may affect the effectiveness of treatment. Jakarta, the capital city of Indonesia, recorded the highest number of cumulative HIV infection cases in the country. This study aimed to identify on the appearance of TDR, as well as to identify HIV-1 subtypes circulating among treatment-naive individuals in Jakarta. Whole blood samples collected from 43 HIV-1 infected, treatment-naive individuals. Viral subtyping and drug resistance testing were performed on HIV-1 pol genes amplified using nested polymerase chain reaction. CRF01_AE was detected most frequently in Jakarta (73.08%). Drug resistance-related major mutation was not detected in protease fragments of pol gene, but two major mutations, K103N (6.67%) and Y181C (6.67%), were detected in reverse transcriptase fragments of pol gene. Our results suggest that TDR was emerged in Jakarta at a certain extent, thus further surveillance study to monitor the TDR prevalence and circulating HIV-1 subtypes in this region is considered to be necessary.

SELECTION OF CITATIONS
SEARCH DETAIL
...