Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Virol ; 81(11): 6068-78, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17376914

ABSTRACT

The majority of AIDS-associated primary effusion lymphomas (PEL) are latently infected with both Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV). PELs harboring two viruses have higher oncogenic potential, suggesting functional interactions between EBV and KSHV. The KSHV replication and transcription activator (K-RTA) is necessary and sufficient for induction of KSHV lytic replication. EBV latent membrane protein 1 (LMP-1) is essential for EBV transformation and establishment of latency in vitro. We show EBV inhibits chemically induced KSHV lytic replication, in part because of a regulatory loop in which K-RTA induces EBV LMP-1 and LMP-1 in turn inhibits K-RTA expression and furthermore the lytic gene expression of KSHV. Suppression of LMP-1 expression in dually infected PEL cells enhances the expression of K-RTA and lytic replication of KSHV upon chemical induction. Because LMP-1 is known to inhibit EBV lytic replication, KSHV-mediated induction of LMP-1 would potentiate EBV latency. Moreover, KSHV infection of EBV latency cells induces LMP-1, and K-RTA is involved in the induction. Both LMP-1 and K-RTA are expressed during primary infection by EBV of KSHV latency cells. Our findings provide evidence that an interaction between EBV and KSHV at molecular levels promotes the maintenance and possibly establishment of viral latency, which may contribute to pathogenesis of PELs.


Subject(s)
Herpesvirus 4, Human/physiology , Herpesvirus 8, Human/physiology , Lymphoma, AIDS-Related/virology , Virus Replication/physiology , Amino Acid Sequence , Cell Line , Cell Line, Tumor , Humans , Molecular Sequence Data , Pleural Effusion, Malignant/virology
2.
J Biol Chem ; 279(44): 46335-42, 2004 Oct 29.
Article in English | MEDLINE | ID: mdl-15322136

ABSTRACT

Epstein-Barr virus (EBV) infection is associated with several human cancers. Latent membrane protein 1 (LMP-1) is one of the key viral proteins required for transformation of primary B cells in vitro and establishment of EBV latency. In this report, we show that LMP-1 is able to induce the expression of several interferon (IFN)-stimulated genes (ISGs) with antiviral properties such as 2'-5' oligoadenylate synthetase (OAS), stimulated trans-acting factor of 50 kDa (STAF-50), and ISG-15. LMP-1 inhibits vesicular stomatitis virus (VSV) replication at low multiplicity of infection (0.1 pfu/cell). The antiviral effect of LMP-1 is associated with the ability of LMP-1 to induce ISGs; an LMP-1 mutant that cannot induce ISGs fails to induce an antiviral state. High levels of ISGs are expressed in EBV latency cells in which LMP-1 is expressed. EBV latency cells have antiviral activity that inhibits replication of superinfecting VSV. The antiviral activity of LMP-1 is apparently not related to IFN production in our experimental systems. In addition, EBV latency is responsive to viral superinfection: LMP-1 is induced and EBV latency is disrupted by EBV lytic replication during VSV superinfection of EBV latency cells. These data suggest that LMP-1 has antiviral effect, which may be an intrinsic part of EBV latency program to assist the establishment and/or maintenance of EBV latency.


Subject(s)
2',5'-Oligoadenylate Synthetase/genetics , Gene Expression Regulation , Interferons/physiology , Repressor Proteins/genetics , Transcription Factors/genetics , Viral Matrix Proteins/physiology , DNA-Binding Proteins/genetics , Humans , Interferon Regulatory Factor-7 , Membrane Glycoproteins/genetics , Minor Histocompatibility Antigens , STAT1 Transcription Factor , Trans-Activators/genetics , Tripartite Motif Proteins , Vesicular stomatitis Indiana virus/physiology , Viral Envelope Proteins/genetics , Virus Latency , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...