Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Orthop Sci ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777662

ABSTRACT

BACKGROUND: To the best of our knowledge, no prior studies have identified any risk factors for subchondral insufficiency fractures of the medial tibial condyle. This study aimed to explain relationships between subchondral insufficiency fractures of the medial tibial condyle and the meniscus status, lower extremity alignment, or osteoporosis. METHODS: This retrospective study included 325 consecutive patients whose chief complaint is knee joint pain and who had visited one institution between April 2016 and March 2021, of which 70 patients (8 men and 62 women) who had suspected subchondral insufficiency fractures of the medial tibial condyle had undergone magnetic resonance imaging and radiographic examination. These patients were divided into two groups based on the results of their magnetic resonance imaging: the insufficiency fracture group included 46 patients who had subchondral insufficiency fractures of the medial tibial condyle and the nonfracture group included 24 patients without fractures. The meniscus injury and medial meniscus extrusion (MME) were evaluated by using magnetic resonance imaging. The Kellgren-Lawrence grade, the femorotibial angle, and the percent mechanical axis (%MA) were evaluated with the use of knee radiographs. T-scores were also measured by using dual-energy X-ray absorptiometry with a bone densitometer. RESULTS: MME were significantly larger and the %MA was significantly smaller in the insufficiency fracture group than that in the nonfracture group. The prevalence of medial meniscus injuries and pathological MME were higher in the insufficiency fracture group than those in the nonfracture group. The prevalence of varus knee and osteoporosis did not vary remarkably different between the two groups. CONCLUSION: The patients who had insufficiency fractures of the medial tibial condyle tended to have medial meniscus extrusion.

2.
ACS Biomater Sci Eng ; 9(10): 5804-5812, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37738620

ABSTRACT

Horseradish peroxidase (HRP)-mediated extrusion bioprinting has a significant potential in tissue engineering and regenerative medicine. However, they often face challenges in terms of printing fidelity and structural integrity when using low-viscosity inks. To address this issue, a method that alternately extrudes bioinks and support material was developed in this study. The bioinks consisting of cells, HRP, and phenolated polymers, and the support material contained hydrogen peroxide (H2O2). The support material not only prevented the collapse of the constructs but also supplied H2O2 to facilitate the enzymatic reaction. 3D constructs with tall and complex shapes were successfully printed from a low-viscosity ink containing 10 U/mL HRP and 1.0% w/v phenolated hyaluronic acid (HA-Ph), with a support material containing 10 mM H2O2. Over 90% viability of mouse fibroblasts (10T1/2) was achieved following the printing process, along with a morphology and proliferation rate similar to that of nontreated cells. Furthermore, human hepatoblastoma (HepG2) cells showed an increased spheroid size over 14 days in the printed constructs. The 10T1/2 cells adhered and proliferated on the constructs printed from inks containing both phenolated gelatin and HA-Ph. These results demonstrate the great potential of this HRP-mediated extrusion bioprinting technique for tissue engineering applications.

3.
Carbohydr Polym ; 316: 121026, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37321724

ABSTRACT

Herein, we report the hydrogelation of sugar beet pectin (SBP) via visible light-mediated photocrosslinking and its applications in extrusion-based 3D bioprinting. Rapid hydrogelation (<15 s) was achieved by applying 405 nm visible light to an SBP solution in the presence of tris(bipyridine)ruthenium(II) chloride hexahydrate ([Ru(bpy)3]2+) and sodium persulfate (SPS). The mechanical properties of the hydrogel could be tuned by controlling the visible light irradiation time and concentrations of SBP, [Ru(bpy)3]2+, and SPS. High-fidelity 3D hydrogel constructs were fabricated by extruding inks containing 3.0 wt% SBP, 1.0 mM [Ru(bpy)3]2+, and 1.0 mM SPS. Human hepatoblastoma (HepG2) cells encapsulated in SBP hydrogels remained viable and metabolically active after 14 d of culture. Overall, this study demonstrates the feasibility of applying SBP and a visible light-mediated photocrosslinking system to the 3D bioprinting of cell-laden constructs for tissue engineering applications.


Subject(s)
Beta vulgaris , Bioprinting , Humans , Pectins , Hydrogels , Light , Sugars
4.
Carbohydr Polym ; 277: 118820, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893237

ABSTRACT

In this present work, we developed a phenol grafted polyglucuronic acid (PGU) and investigated the usefulness in tissue engineering field by using this derivative as a bioink component allowing gelation in extrusion-based 3D bioprinting. The PGU derivative was obtained by conjugating with tyramine, and the aqueous solution of the derivative was curable through a horseradish peroxidase (HRP)-catalyzed reaction. From 2.0 w/v% solution of the derivative containing 5 U/mL HRP, hydrogel constructs were successfully obtained with a good shape fidelity to blueprints. Mouse fibroblasts and human hepatoma cells enclosed in the printed constructs showed about 95% viability the day after printing and survived for 11 days of study without a remarkable decrease in viability. These results demonstrate the great potential of the PGU derivative in tissue engineering field especially as an ink component of extrusion-based 3D bioprinting.


Subject(s)
Bioprinting , Glucuronic Acid/chemistry , Ink , Polymers/chemistry , Animals , Cell Line , Glucuronic Acid/chemical synthesis , Glucuronic Acid/isolation & purification , Mice , Molecular Structure , Polymers/chemical synthesis , Polymers/isolation & purification
5.
Biomolecules ; 11(12)2021 12 20.
Article in English | MEDLINE | ID: mdl-34944552

ABSTRACT

Freeform bioprinting, realized by extruding ink-containing cells into supporting materials to provide physical support during printing, has fostered significant advances toward the fabrication of cell-laden soft hydrogel constructs with desired spatial control. For further advancement of freeform bioprinting, we aimed to propose a method in which the ink embedded in supporting materials gelate through a cytocompatible and rapid cascade reaction between oxidase and peroxidase. To demonstrate the feasibility of the proposed method, we extruded ink containing choline, horseradish peroxidase (HRP), and a hyaluronic acid derivative, cross-linkable by HRP-catalyzed reaction, into a supporting material containing choline oxidase and successfully obtained three-dimensional hyaluronic acid-based hydrogel constructs with good shape fidelity to blueprints. Cytocompatibility of the bioprinting method was confirmed by the comparable growth of mouse fibroblast cells, released from the printed hydrogels through degradation on cell culture dishes, with those not exposed to the printing process, and considering more than 85% viability of the enclosed cells during 10 days of culture. Owing to the presence of derivatives of the various biocompatible polymers that are cross-linkable through HRP-mediated cross-linking, our results demonstrate that the novel 3D bioprinting method has great potential in tissue engineering applications.


Subject(s)
Alcohol Oxidoreductases/metabolism , Bioprinting/methods , Fibroblasts/cytology , Horseradish Peroxidase/metabolism , Hyaluronic Acid/chemistry , Alcohol Oxidoreductases/chemistry , Animals , Biocatalysis , Cell Culture Techniques , Cell Line , Feasibility Studies , Fibroblasts/metabolism , Horseradish Peroxidase/chemistry , Hydrogels , Ink , Mice , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds
6.
Sports (Basel) ; 9(3)2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33802504

ABSTRACT

Exercise increases oxidative stress, leading the body to strengthen its antioxidant defenses, thus reducing the incidence of major diseases. As these associations are relatively unclear for ordinary levels of exercise for reduced stress, this study evaluated the effects of different exercise conditions on diacron-reactive oxygen metabolites (d-ROMs), biological antioxidant potential (BAP), and subjective mood. Forty-nine students (22.4 ± 2.6 years) were assessed using the Profile of Mood States (POMS) before and after exercising for 60 min. Participants were divided into two groups: Group A engaged in compulsory sports and Group B in freely chosen sports. d-ROMs and BAP were measured, and their modified ratio was calculated as an index of antioxidant potential. Physiological evaluation showed significant improvements in BAP and the BAP/d-ROMs ratio, irrespective of exercise condition (p < 0.001, p < 0.01). Comparison between the exercise conditions revealed a significant difference in the modified ratio (p < 0.02). In mood assessment, scores on emotion-related scales without vigor improved significantly under both exercise conditions (p < 0.001). Mental changes were evident after exercise, and potential antioxidant capacity was higher in freely chosen sports (p < 0.03). Assessment of antioxidant status before and after exercise may provide an objective index of mental and physical conditioning.

7.
Mol Biol Rep ; 47(2): 977-986, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31734897

ABSTRACT

Skeletal muscle regeneration is mostly dependent on muscle satellite cells. Proper muscle regeneration requires enough number of satellite cells. Recent studies have suggested that the number of satellite cells in skeletal muscle declines as we age, leading to the impairment of muscle regeneration in older population. Our earlier study demonstrated that zinc finger transcription factor early growth response 3 (Egr3) plays an important role for maintaining the number of myoblasts, suggesting that age-related decrease in muscle satellite cell should be associated with the expression levels of Egr3. The aim of this study was to investigate whether aging would alter the Egr3 expression in satellite cells. A couple groups of male C57BL/6J mice were examined in this study: young (3 Mo) and old (17 Mo). Immunohistochemical staining showed that the satellite cell number decreased in normal and injured muscles of old mice. In fluorescence-activated cell sorting-isolated muscle satellite cells from normal and injured muscles, the mRNA expression of Egr3 was significantly decreased with age regardless of injury. In harmony with these results, Pax7 mRNA levels also decreased in the satellite cells from old mice. Alternatively, inhibition of Egr3 expression by shRNA decreased Pax7 protein expression in cultured myoblasts. These results suggest that Egr3 is associated with the age-related decline of muscle satellite cells in older population. Also, Egr3 might be implicated in the regulation of Pax7. Therefore, the loss of Egr3 expression may elucidate attenuated MSCs function and muscle regeneration in older age.


Subject(s)
Aging/metabolism , Early Growth Response Protein 3/genetics , Satellite Cells, Skeletal Muscle/metabolism , Age Factors , Aging/genetics , Animals , Cells, Cultured , Early Growth Response Protein 3/metabolism , Gene Expression Regulation/genetics , Male , Mice , Mice, Inbred C57BL , Muscle Cells/metabolism , Muscle Development/physiology , Muscle, Skeletal/physiology , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Regeneration , Satellite Cells, Skeletal Muscle/physiology , Wound Healing
8.
Nucl Med Biol ; 37(8): 903-10, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21055620

ABSTRACT

INTRODUCTION: High expression of the system L amino acid transporter has been observed in clinically important tissues including tumors and the blood-brain barrier. We examined amino acid transport system L selectivity of (14)C(U)-L-tyrosine ((14)C-Tyr), (125)I-4-iodo-L-meta-tyrosine (4-(125)I-mTyr), (125)I-6-iodo-L-meta-tyrosine (6-(125)I-mTyr), (125)I-3-iodo-α-methyl-L-tyrosine ((125)I-IMT) and (125)I-3-iodo-L-tyrosine (3-(125)I-Tyr) using Chinese hamster ovary cells (CHO-K1). METHODS: Cells in the exponential growth phase were incubated with 18.5 kBq of labeled amino acid in 2 mL of phosphate-buffered saline-based uptake solution and an uptake solution with/without Na(+) at 37°C or 4°C. We examined the effects of the following compounds (1.0 mM) on transport: 2-(methylamino)isobutyric acid (a specific inhibitor of system A, in Na(+)-containing uptake solution); 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (a specific inhibitor of system L, in Na(+)-free uptake solution); sodium azide and 2,4-dinitrophenol (NaN(3) and DNP, inhibitors of the generation of adenosine triphosphate); p-aminohippurate and tetraethylammonium (PAH and TEA, inhibitors of organic anion and cation transporters); and L- and D-isomers of natural amino acids. RESULTS: (14)C-Tyr exhibited affinity for systems L, A and ASC. 4-(125)I-mTyr and 3-(125)I-Tyr exhibited high specificity for system L, whereas 6-(125)I-mTyr and (125)I-IMT exhibited affinity for both systems L and ASC. Uptake of 4-(125)I-mTyr was markedly reduced by incubation at 4 °C, and was not significantly inhibited by NaN(3), DNP, PAH or TEA. The inhibition profiles of the L- and D-isomers of natural amino acids indicated that system L mediates the transport of 4-(125)I-mTyr. CONCLUSIONS: 4-(125)I-mTyr exhibited the greatest system L specificity (93.46 ± 0.13%) of all of the tested amino acids.


Subject(s)
Monoiodotyrosine/chemistry , Monoiodotyrosine/metabolism , Animals , Biological Transport/drug effects , CHO Cells , Cell Proliferation , Cricetinae , Cricetulus , Iodine Radioisotopes , Kinetics , Stereoisomerism , Substrate Specificity
9.
Nucl Med Biol ; 37(2): 197-204, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20152719

ABSTRACT

INTRODUCTION: We examined 3-[(123)I]iodo-alpha-methyl-L-tyrosine ([(123)I]IMT) uptake and inhibition by amino acids and amino acid-like drugs in the human DLD-1 colon cancer cell line, to discuss correlation between the inhibition effect and structure. METHODS: Expression of relevant neutral amino acid transporters was examined by real-time PCR with DLD-1 cells. The time course of [(125)I]IMT uptake, contributions of transport systems, concentration dependence and inhibition effects by amino acids and amino acid-like drugs (1 mM) on [(125)I]IMT uptake were examined. RESULTS: Expression of system L (4F2hc, LAT1 and LAT2), system A (ATA1, ATA2) and system ASC (ASCT1) was strongly detected; system L (LAT3, LAT4) and MCT8 were weakly detected; and B(0)AT was not detected. [(125)I]IMT uptake in DLD-1 cells involved Na(+)-independent system L primarily and Na(+)-dependent system(s). Uptake of [(125)I]IMT in Na(+)-free buffer followed Michaelis-Menten kinetics, with a K(m) of 78 microM and V(max) of 333 pmol/10(6) cells per minute. Neutral D- and L-amino acids with branched or aromatic large side chains inhibited [(125)I]IMT uptake. Tyrosine analogues, tryptophan analogues, L-phenylalanine and p-halogeno-L-phenylalanines, and gamma amino acids [including 3,4-dihydroxy-L-phenylalanine (L-DOPA), DL-threo-beta-(3,4-dihydroxyphenyl)serine (DOPS), 4-[bis(2-chloroethyl)amino]-L-phenylalanine and 1-(aminomethyl)-cyclohexaneacetic acid] strongly inhibited [(125)I]IMT uptake, but L-tyrosine methyl ester and R(+)/S(-)-baclofen weakly inhibited uptake. The substrates of system ASC and A did not inhibit [(125)I]IMT uptake except L-serine and D/L-cysteine. CONCLUSIONS: [(125)I]IMT uptake in DLD-1 cells involves mostly LAT1 and its substrates' (including amino acid-like drugs derived from tyrosine, tryptophan and phenylalanine) affinity to transport via LAT1. Whether transport of gamma amino acid analogues is involved in LAT1 depends on the structure of the group corresponding to the amino acid residue. Beta-hydroxylation may confer reduction of transport affinity of tyrosine analogues via LAT1.


Subject(s)
Amino Acids/chemistry , Amino Acids/pharmacology , Colonic Neoplasms/pathology , Methyltyrosines/metabolism , Amino Acid Transport Systems/metabolism , Biological Transport , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Humans , Structure-Activity Relationship
10.
Appl Spectrosc ; 63(5): 555-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19470213

ABSTRACT

We demonstrate the monitoring of plant nutrients in leaves of Citrus unshiu and Rhododendron obtusum using low-energy (<1 mJ) laser-induced breakdown spectroscopy. The raw plant leaf was successfully ablated without desiccation before laser irradiation, by applying metallic colloidal particles to the leaf surface. The emission intensity with the metallic particles was larger than that without the particles. This result indicates an improvement of the sensitivity and the detection limit of laser-induced breakdown spectroscopy. The emission enhancement was caused by localized surface plasmon resonance and was dependent on the size and material of metallic particles.


Subject(s)
Citrus/chemistry , Plant Leaves/chemistry , Rhododendron/chemistry , Spectrum Analysis/methods , Surface Plasmon Resonance/methods , Colloids/chemistry , Gold/chemistry , Lasers , Sensitivity and Specificity , Silver/chemistry , Surface Properties
11.
Nucl Med Biol ; 34(8): 1003-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17998105

ABSTRACT

INTRODUCTION: In order to improve tumor imaging, changes in the pharmacokinetics of 3-[123I]iodo-alpha-methyl-l-tyrosine ([123I]IMT), an artificial amino acid that exhibits high tumor accumulation, after probenecid (PBC) loading was studied in mice implanted with colon cancer DLD-1 cells using 125I-labeled IMT ([125I]IMT). METHODS: DLD-1-implanted KSN-slc nude male mice received 740 kBq of [125I]IMT via the tail vein at 5 min after 50 mg/kg body weight PBC loading, and autoradiography was performed at 5, 15 and 30 min after injection. Male ddY mice then received 670 kBq of [125I]IMT and 50 mg/kg 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (BCH) or p-aminohippurate (PAH) via the tail vein, and kidney autoradiography was performed at 5 min after injection. In vitro inhibition study was then performed based on the accumulation mechanisms of [125I]IMT in DLD-1, using 1 mM l-tyrosine, BCH, alpha-(methylamino)-isobutyric acid, N-benzoyl-beta-alanine, PBC, PAH, 2,4-dinitrophenol and sodium azide. Both Na+-dependent and Na+-independent uptake were investigated. RESULTS: Higher tumor accumulation in PBC-loaded DLD-1-implanted mice was seen when compared to control mice. PAH and BCH, respectively, reduced renal accumulation in the tubule segment-2 (S2)-like and S1-like regions. We confirmed that [125I]IMT transport is predominantly mediated by l-type amino acid transporter-1 in DLD-1 cells. CONCLUSIONS: [125I]IMT uptake is mediated by organic anion and amino acid transporters in the kidney. Organic anion transporter inhibitors may yield better tumor images with good tumor/normal tissue radioactivity ratios if adequate administration plans are developed.


Subject(s)
Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/metabolism , Kidney/diagnostic imaging , Kidney/metabolism , Methyltyrosines/pharmacokinetics , Probenecid/administration & dosage , Animals , Cell Line, Tumor , Kidney/drug effects , Male , Metabolic Clearance Rate/drug effects , Mice , Organ Specificity/drug effects , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution/drug effects , Uricosuric Agents/administration & dosage
12.
Nucl Med Biol ; 34(6): 659-65, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17707806

ABSTRACT

INTRODUCTION: The fact that d-amino acids have been found in various tissues and are involved in various functions is a clue to how to develop new imaging agents. We examined d-amino acid transport mechanisms in Chinese hamster ovary (CHO-K1) cells because CHO-K1 cells are widely used in biomedical studies and are thought to be useful for expression of genes involved in metabolism of D-amino acids. METHODS: Uptake experiments were performed. CHO-K1 cells cultured in 60-mm plastic culture dishes under ordinary culture conditions were incubated with 18.5 kBq of radiolabeled amino acid in 2 ml of phosphate-buffered-saline-based uptake solution at 37 degrees C. The following radiolabeled amino acid tracers were used: D-[1-(14)C]-alanine, L-[1-(14)C]-alanine, D-[1-(14)C]-serine, L-[1-(14)C]-serine, D-[1-(14)C]-methionine, L-[1-(14)C]-methionine, D-[1-(14)C]-phenylalanine, L-[1-(14)C]-phenylalanine, D-[1-(14)C]-leucine, L-[1-(14)C]-leucine, D-[1-(14)C]-valine, L-[1-(14)C]-valine, D-[1-(14)C]-tyrosine, L-[1-(14)C]-tyrosine, D-[1-(14)C]-glutamic acid, L-[1-(14)C]-glutamic acid, D-[1-(14)C]-lysine, L-[1-(14)C]-lysine, D-[1-(14)C]-arginine and L-[L-(14)C]-arginine. We tested the inhibitory effects of the following compounds (1.0 mM) on transport: 2-(methylamino)isobutyric acid (a specific inhibitor of system A, in Na(+)-containing uptake solution) and 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (a specific inhibitor of system L, in Na(+)-free uptake solution). RESULTS: D-[1-(14)C]-methionine, D-[1-(14)C]-phenylalanine and D-[1-(14)C]-tyrosine accumulated mainly via system L. D-[1-(14)C]-alanine and D-[1-(14)C]-serine accumulated primarily via system ASC. High uptake of D-[1-(14)C]-alanine, D-[1-(14)C]-methionine, D-[1-(14)C]-phenylalanine and D-[1-(14)C]-leucine was observed. The uptake of radiolabeled serine, valine, tyrosine, glutamic acid and arginine into CHO-K1 was highly stereoselective for l-isomers. CONCLUSIONS: We observed high uptake of D-[1-(14)C]-alanine via system ASC (most likely alanine-serine-cysteine-selective amino acid transporter-1) and high uptake of D-[1-(14)C]-methionine and D-[1-(14)C]-phenylalanine via system L (most likely L-type amino acid transporter-1).


Subject(s)
Amino Acids/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Animals , CHO Cells , Carbon Radioisotopes , Cricetinae , Cricetulus , Indicators and Reagents , Isotope Labeling , Stereoisomerism
13.
Ann Nucl Med ; 20(3): 175-81, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16715947

ABSTRACT

OBJECTIVE: Fanconi syndrome is a renal dysfunction characterized by various combinations of renal tubular transport dysfunction involving amino acids, glucose, protein and other substances. Most reabsorption of amino acids occurs in proximal renal tubule segment 1 (S1). The present study evaluated the possibility of early detection of drug-induced Fanconi syndrome, based on decreased renal accumulation of 125I-3-iodo-alpha-methyl-L-tyrosine (125I-IMT), an amino acid transport marker, in the S1 region of renal cortex. The present experimental model used maleate (MAL)-induced Fanconi syndrome in mice. Results were compared between 125I-IMT and 3 other clinical renal radiopharmaceuticals: 99mTc-2,3-dimercaptosuccinic acid (99mTc-DMSA); 99mTc-mercaptoacetylglycylglycylglycine (99mTc-MAG3); and 99mTc-diethylenetriaminepentaacetic acid (99mTc-DTPA). METHODS: Male ddY mice (age, 6 weeks; body weight, 25 g) were used to create a Fanconi model of renal dysfunction. A single dose of maleate disodium salt was administered by intraperitoneal injection (6 mmol/kg). Hematoxylin and eosin (HE) staining of the renal cortex, renal autoradiography and measurement of renal radioactivity of labeled compounds were performed at 30, 60, 90 and 120 min after MAL injection. At 5 min after injection of labeled compounds (18.5 kBq for accumulation experiment, 670 kBq for autoradiography), animals were sacrificed by ether overdose and kidneys were removed. For the accumulation experiment, radioactivity was measured using a well-type scintillation counter. For autoradiography, 20-microm sections of frozen kidney were used with Bio-Imaging Analyzer. RESULTS: At 30 min after MAL injection, HE staining showed pyknosis in some proximal tubule cells. At that time, accumulations of 125I-IMT and 99mTc-DMSA in the S1 region were approximately 67% and 55% of control levels (p < 0.005). MAL increased accumulation of 99mTc-DTPA in the S1 region, but had no effect on accumulation of 99mTc-MAG3 in the S 1 region. CONCLUSIONS: Decreased accumulation of 123I-IMT in the S1 region appears to represent a useful marker for detection of MAL-induced Fanconi syndrome. In future, we plan to assess the efficacy of using 125I-IMT to monitor renal dysfunction induced by nephrotoxic clinical drugs.


Subject(s)
Fanconi Syndrome/diagnostic imaging , Fanconi Syndrome/metabolism , Kidney Cortex/diagnostic imaging , Kidney Cortex/metabolism , Maleates , Methyltyrosines/pharmacokinetics , Absorption , Animals , Disease Models, Animal , Fanconi Syndrome/chemically induced , Kidney Cortex/drug effects , Metabolic Clearance Rate , Mice , Mice, Inbred Strains , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...