Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Res ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844121

ABSTRACT

BACKGROUND: Studying the human genome is crucial to embrace precision medicine through tailoring treatment and prevention strategies to the unique genetic makeup and molecular information of individuals. After human genome project (1990-2003) generated the first full sequence of a human genome, there have been concerns towards Northern bias due to underrepresentation of other populations. Multiple countries have now established national genome projects aiming at the genomic knowledge that can be harnessed from their populations, which in turn can serve as a basis for their health care policies in the near future. AIM OF REVIEW: The intention is to introduce the recently established Egypt Genome (EG) to delineate the genomics and genetics of both the modern and Ancient Egyptian populations. Leveraging genomic medicine to improve precision medicine strategies while building a solid foundation for large-scale genomic research capacity is the fundamental focus of EG. KEY SCIENTIFIC CONCEPTS: EG generated genomic knowledge is predicted to enrich the existing human genome and to expand its diversity by studying the underrepresented African/Middle Eastern populations. The insightful impact of EG goes beyond Egypt and Africa as it fills the knowledge gaps in health and disease genomics towards improved and sustainable genomic-driven healthcare systems for better outcomes. Promoting the integration of genomics into clinical practice and spearheading the implementation of genomic-driven healthcare and precision medicine is therefore a key focus of EG. Mining into the wealth of Ancient Egyptian Genomics to delineate the genetic bridge between the contemporary and Ancient Egyptian populations is another excitingly unique area of EG to realize the global vision of human genome.

2.
J Cloud Comput (Heidelb) ; 11(1): 97, 2022.
Article in English | MEDLINE | ID: mdl-36569183

ABSTRACT

In the early days of digital transformation, the automation, scalability, and availability of cloud computing made a big difference for business. Nonetheless, significant concerns have been raised regarding the security and privacy levels that cloud systems can provide, as enterprises have accelerated their cloud migration journeys in an effort to provide a remote working environment for their employees, primarily in light of the COVID-19 outbreak. The goal of this study is to come up with a way to improve steganography in ad hoc cloud systems by using deep learning. This research implementation is separated into two sections. In Phase 1, the "Ad-hoc Cloud System" idea and deployment plan were set up with the help of V-BOINC. In Phase 2, a modified form of steganography and deep learning were used to study the security of data transmission in ad-hoc cloud networks. In the majority of prior studies, attempts to employ deep learning models to augment or replace data-hiding systems did not achieve a high success rate. The implemented model inserts data images through colored images in the developed ad hoc cloud system. A systematic steganography model conceals from statistics lower message detection rates. Additionally, it may be necessary to incorporate small images beneath huge cover images. The implemented ad-hoc system outperformed Amazon AC2 in terms of performance, while the execution of the proposed deep steganography approach gave a high rate of evaluation for concealing both data and images when evaluated against several attacks in an ad-hoc cloud system environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...