Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
MethodsX ; 12: 102754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846433

ABSTRACT

Attention mechanism has recently gained immense importance in the natural language processing (NLP) world. This technique highlights parts of the input text that the NLP task (such as translation) must pay "attention" to. Inspired by this, some researchers have recently applied the NLP domain, deep-learning based, attention mechanism techniques to predictive maintenance. In contrast to the deep-learning based solutions, Industry 4.0 predictive maintenance solutions that often rely on edge-computing, demand lighter predictive models. With this objective, we have investigated the adaptation of a simpler, incredibly fast and compute-resource friendly, "Nadaraya-Watson estimator based" attention method. We develop a method to predict tool-wear of a milling machine using this attention mechanism and demonstrate, with the help of heat-maps, how the attention mechanism highlights regions that assist in predicting onset of tool-wear. We validate the effectiveness of this adaptation on the benchmark IEEEDataPort PHM Society dataset, by comparing against other comparatively "lighter" machine learning techniques - Bayesian Ridge, Gradient Boosting Regressor, SGD Regressor and Support Vector Regressor. Our experiments indicate that the proposed Nadaraya-Watson attention mechanism performed best with an MAE of 0.069, RMSE of 0.099 and R2 of 83.40 %, when compared to the next best technique Gradient Boosting Regressor with figures of 0.100, 0.138, 66.51 % respectively. Additionally, it produced a lighter and faster model as well.•We propose a Nadaraya-Watson estimator based "attention mechanism", applied to a predictive maintenance problem.•Unlike the deep-learning based attention mechanisms from the NLP domain, our method creates fast, light and high-performance models, suitable for edge computing devices and therefore supports the Industry 4.0 initiative.•Method validated on real tool-wear data of a milling machine.

2.
MethodsX ; 12: 102747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774685

ABSTRACT

The Internet of Things (IoT) has radically reformed various sectors and industries, enabling unprecedented levels of connectivity and automation. However, the surge in the number of IoT devices has also widened the attack surface, rendering IoT networks potentially susceptible to a plethora of security risks. Addressing the critical challenge of enhancing security in IoT networks is of utmost importance. Moreover, there is a considerable lack of datasets designed exclusively for IoT applications. To bridge this gap, a customized dataset that accurately mimics real-world IoT scenarios impacted by four different types of attacks-blackhole, sinkhole, flooding, and version number attacks was generated using the Contiki-OS Cooja Simulator in this study. The resulting dataset is then consequently employed to evaluate the efficacy of several metaheuristic algorithms, in conjunction with Convolutional Neural Network (CNN) for IoT networks. •The proposed study's goal is to identify optimal hyperparameters for CNNs, ensuring their peak performance in intrusion detection tasks.•This study not only intensifies our comprehension of IoT network security but also provides practical guidance for implementation of the robust security measures in real-world IoT applications.

3.
MethodsX ; 12: 102737, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774687

ABSTRACT

In the digital age, the proliferation of health-related information online has heightened the risk of misinformation, posing substantial threats to public well-being. This research conducts a meticulous comparative analysis of classification models, focusing on detecting health misinformation. The study evaluates the performance of traditional machine learning models and advanced graph convolutional networks (GCN) across critical algorithmic metrics. The results comprehensively understand each algorithm's effectiveness in identifying health misinformation and provide valuable insights for combating the pervasive spread of false health information in the digital landscape. GCN with TF-IDF gives the best result, as shown in the result section. •The research method involves a comparative analysis of classification algorithms to detect health misinformation, exploring traditional machine learning models and graph convolutional networks.•This research used algorithms such as Passive Aggressive Classifier, Random Forest, Decision Tree, Logistic Regression, Light GBM, GCN, GCN with BERT, GCN with TF-IDF, and GCN with Word2Vec were employed. Performance Metrics: Accuracy: for Passive Aggressive Classifier: 85.75 %, Random Forest: 86 %, Decision Tree: 81.30 %, Light BGM: 83.29 %, normal GCN: 84.53 %, GCN with BERT: 85.00 %, GCN with TR-IDF: 93.86 % and GCN with word2Vec: 81.00 %•Algorithmic performance metrics, including accuracy, precision, recall, and F1-score, were systematically evaluated to assess the efficacy of each model in detecting health misinformation, focusing on understanding the strengths and limitations of different approaches. The superior performance of Graph Convolutional Networks (GCNs) with TF-IDF embedding, achieving an accuracy of 93.86.

4.
MethodsX ; 12: 102683, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38623305

ABSTRACT

The banking sector's shift from traditional physical locations to digital channels has offered customers unprecedented convenience and increased the risk of fraud for customers and institutions alike. In this study, we discuss the pressing need for robust fraud detection & prevention systems in the context of evolving technological environments. We introduce a graph-based machine learning model that is specifically designed to detect fraudulent activity in various types of banking operations, such as credit card transactions, debit card transactions, and online banking transactions. This model uses advanced methods for anomalies, behaviors, and patterns to analyze past transactions and user behavior almost immediately. We provide an in-depth methodology for evaluating fraud detection systems based on parameters such as Accuracy Recall rate and False positive rate ROC curves. The findings can be used by financial institutions to develop and enhance fraud detection strategies as they demonstrate the effectiveness and reliability of the proposed approach. This study emphasizes the critical role that innovative technologies play in safeguarding the financial sector from the ever-changing strategies of fraudsters while also enhancing banking security.•This paper aims to implement the detection of fraudulent transactions using a state-of-the-art Graph Database approach.•The relational graph of features in the dataset used is modelled using Neo4J as a graph database.•Applying JSON features from the exported graph to various Machine Learning models, giving effective outcomes.

5.
PeerJ Comput Sci ; 10: e1769, 2024.
Article in English | MEDLINE | ID: mdl-38686011

ABSTRACT

Object detection methods based on deep learning have been used in a variety of sectors including banking, healthcare, e-governance, and academia. In recent years, there has been a lot of attention paid to research endeavors made towards text detection and recognition from different scenesor images of unstructured document processing. The article's novelty lies in the detailed discussion and implementation of the various transfer learning-based different backbone architectures for printed text recognition. In this research article, the authors compared the ResNet50, ResNet50V2, ResNet152V2, Inception, Xception, and VGG19 backbone architectures with preprocessing techniques as data resizing, normalization, and noise removal on a standard OCR Kaggle dataset. Further, the top three backbone architectures selected based on the accuracy achieved and then hyper parameter tunning has been performed to achieve more accurate results. Xception performed well compared with the ResNet, Inception, VGG19, MobileNet architectures by achieving high evaluation scores with accuracy (98.90%) and min loss (0.19). As per existing research in this domain, until now, transfer learning-based backbone architectures that have been used on printed or handwritten data recognition are not well represented in literature. We split the total dataset into 80 percent for training and 20 percent for testing purpose and then into different backbone architecture models with the same number of epochs, and found that the Xception architecture achieved higher accuracy than the others. In addition, the ResNet50V2 model gave us higher accuracy (96.92%) than the ResNet152V2 model (96.34%).

6.
MethodsX ; 12: 102654, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38510932

ABSTRACT

Handwritten text recognition (HTR) within computer vision and image processing stands as a prominent and challenging research domain, holding significant implications for diverse applications. Among these, it finds usefulness in reading bank checks, prescriptions, and deciphering characters on various forms. Optical character recognition (OCR) technology, specifically tailored for handwritten documents, plays a pivotal role in translating characters from a range of file formats, encompassing both word and image documents. Challenges in HTR encompass intricate layout designs, varied handwriting styles, limited datasets, and less accuracy achieved. Recent advancements in Deep Learning and Machine Learning algorithms, coupled with the vast repositories of unprocessed data, have propelled researchers to achieve remarkable progress in HTR. This paper aims to address the challenges in handwritten text recognition by proposing a hybrid approach. The primary objective is to enhance the accuracy of recognizing handwritten text from images. Through the integration of Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) with a Connectionist Temporal Classification (CTC) decoder, the results indicate substantial improvement. The proposed hybrid model achieved an impressive 98.50% and 98.80% accuracy on the IAM and RIMES datasets, respectively. This underscores the potential and efficacy of the consecutive use of these advanced neural network architectures in enhancing handwritten text recognition accuracy. •The proposed method introduces a hybrid approach for handwritten text recognition, employing CNN and BiLSTM with CTC decoder.•Results showcase a remarkable accuracy improvement of 98.50% and 98.80% on IAM and RIMES datasets, emphasizing the potential of this model for enhanced accuracy in recognizing handwritten text from images.

7.
ACS Omega ; 9(7): 8019-8036, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405460

ABSTRACT

Recent studies focus on enhancing the mechanical features of natural fiber composites to replace synthetic fibers that are highly useful in the building, automotive, and packing industries. The novelty of the work is that the woven areca sheath fiber (ASF) with different fiber fraction epoxy composites has been fabricated and tested for its tribological responses on three-body abrasion wear testing machines along with its mechanical features. The impact of the fiber fraction on various features is examined. The study also revolves around the development and validation of a machine learning predictive model using the random forest (RF) algorithm, aimed at forecasting two critical performance parameters: the specific wear rate (SWR) and the coefficient of friction (COF). The void fraction is observed to vary between 0.261 and 3.8% as the fiber fraction is incremented. The hardness of the mat rises progressively from 40.23 to 84.26 HRB. A fair ascent in the tensile strength and its modulus is also observed. Even though a short descent in flexural strength and its modulus is seen for 0 to 12 wt % composite specimens, they incrementally raised to the finest values of 52.84 and 2860 MPa, respectively, pertinent to the 48 wt % fiber-loaded specimen. A progressive rise in the ILSS and impact strength is perceptible. The wear behavior of the specimens is reported. The worn surface morphology is studied to understand the interface of the ASF with the epoxy matrix. The RF model exhibited outstanding predictive prowess, as evidenced by high R-squared values coupled with low mean-square error and mean absolute error metrics. Rigorous statistical validation employing paired t tests confirmed the model's suitability, revealing no significant disparities between predicted and actual values for both the SWR and COF.

8.
Data Brief ; 52: 110033, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38299103

ABSTRACT

This article presents a Multimodal database consisting of 222 images of 76 people wherein 111 are OCTA images and 111 are color fundus images taken at the Natasha Eye Care and Research Institute of Pune Maharashtra, India. Nonmydriatic fundus images were acquired using a confocal SLO widefield fundus imaging Eidon machine. Nonmydriatic OCTA images were acquired using the Optovue Avanti Edition machine Initially, the clinical approach described in this article was used to obtain the retinal images. Following that, the dataset was categorized by two experienced eye specialists. To identify instances of Non-Proliferative Diabetic Retinopathy (NPDR) with their various stages, medical professionals and scholars can use this data. Research scholars and ophthalmologists can utilize the data created to develop the initial stages of automated identification techniques for diabetic retinopathy (DR).

9.
Heliyon ; 10(4): e26162, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38420442

ABSTRACT

In recent decades, abstractive text summarization using multimodal input has attracted many researchers due to the capability of gathering information from various sources to create a concise summary. However, the existing methodologies based on multimodal summarization provide only a summary for the short videos and poor results for the lengthy videos. To address the aforementioned issues, this research presented the Multimodal Abstractive Summarization using Bidirectional Encoder Representations from Transformers (MAS-BERT) with an attention mechanism. The purpose of the video summarization is to increase the speed of searching for a large collection of videos so that the users can quickly decide whether the video is relevant or not by reading the summary. Initially, the data is obtained from the publicly available How2 dataset and is encoded using the Bidirectional Gated Recurrent Unit (Bi-GRU) encoder and the Long Short Term Memory (LSTM) encoder. The textual data which is embedded in the embedding layer is encoded using a bidirectional GRU encoder and the features with audio and video data are encoded with LSTM encoder. After this, BERT based attention mechanism is used to combine the modalities and finally, the BI-GRU based decoder is used for summarizing the multimodalities. The results obtained through the experiments that show the proposed MAS-BERT has achieved a better result of 60.2 for Rouge-1 whereas, the existing Decoder-only Multimodal Transformer (D-MmT) and the Factorized Multimodal Transformer based Decoder Only Language model (FLORAL) has achieved 49.58 and 56.89 respectively. Our work facilitates users by providing better contextual information and user experience and would help video-sharing platforms for customer retention by allowing users to search for relevant videos by looking at its summary.

10.
MethodsX ; 12: 102554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38292314

ABSTRACT

Digitization created a demand for highly efficient handwritten document recognition systems. A handwritten document consists of digits, text, symbols, diagrams, etc. Digits are an essential element of handwritten documents. Accurate recognition of handwritten digits is vital for effective communication and data analysis. Various researchers have attempted to address this issue with modern convolutional neural network (CNN) techniques. Even after training, CNN filter weights remain unchanged despite the high identification accuracy. As a result, the process cannot flexibly adapt to input changes. Hence computer vision researchers have recently become interested in Vision Transformers (ViTs) and Multilayer Perceptrons (MLPs). The shortcomings of CNNs gave rise to a hybrid model revolution that combines the best elements of the two fields. This paper analyzes how the hybrid convolutional ViT model affects the ability to recognize handwritten digits. Also, the real-time data contains noise, distortions, and varying writing styles. Hence, cleaned and uncleaned handwritten digit images are used for evaluation in this paper. The accuracy of the proposed method is compared with the state-of-the-art techniques, and the result shows that the proposed model achieves the highest recognition accuracy. Also, the probable solutions for recognizing other aspects of handwritten documents are discussed in this paper.•Analyzed the effect of convolutional vision transformer on cleaned and real-time handwritten digit images.•The model's performance improved with the implication of cross-validation and hyper-parameter tuning.•The results show that the proposed model is robust, feasible, and effective on cleaned and uncleaned handwritten digits.

11.
MethodsX ; 12: 102555, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38292312

ABSTRACT

A rolling bearing is a crucial element within rotating machinery, and its smooth operation profoundly influences the overall well-being of the equipment. Consequently, analyzing its operational condition is crucial to prevent production losses or, in extreme cases, potential fatalities due to catastrophic failures. Accurate estimates of the Remaining Useful Life (RUL) of rolling bearings ensure manufacturing safety while also leading to cost savings.•This paper proposes an intelligent deep learning-based framework for remaining useful life estimation of bearings on the basis of informed detection of anomalies.•The paper demonstrates the setup of an experimental bearing test rig and the collection of bearing condition monitoring data such as vibration data.•Advanced hybrid models of Encoder-Decoder LSTM demonstrate high forecasting accuracy in RUL estimation.

12.
Interdiscip Sci ; 16(1): 16-38, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37962777

ABSTRACT

As one of the most common female cancers, cervical cancer often develops years after a prolonged and reversible pre-cancerous stage. Traditional classification algorithms used for detection of cervical cancer often require cell segmentation and feature extraction techniques, while convolutional neural network (CNN) models demand a large dataset to mitigate over-fitting and poor generalization problems. To this end, this study aims to develop deep learning models for automated cervical cancer detection that do not rely on segmentation methods or custom features. Due to limited data availability, transfer learning was employed with pre-trained CNN models to directly operate on Pap smear images for a seven-class classification task. Thorough evaluation and comparison of 13 pre-trained deep CNN models were performed using the publicly available Herlev dataset and the Keras package in Google Collaboratory. In terms of accuracy and performance, DenseNet-201 is the best-performing model. The pre-trained CNN models studied in this paper produced good experimental results and required little computing time.


Subject(s)
Papanicolaou Test , Uterine Cervical Neoplasms , Female , Humans , Papanicolaou Test/methods , Uterine Cervical Neoplasms/diagnostic imaging , Neural Networks, Computer , Algorithms , Image Interpretation, Computer-Assisted/methods
13.
Data Brief ; 52: 109839, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38146298

ABSTRACT

Retinopathy of prematurity (ROP) is a retinal disorder that may bring about blindness in preterm infants. Early detection and treatment of ROP can prevent this blindness. The gold standard technique for ROP screening is indirect ophthalmoscopy performed by ophthalmologists. The scarcity of medical professionals and inter-observer heterogeneity in ROP grading are two of the screening concerns. Researchers employ artificial intelligence (AI) driven ROP screening systems to assist medical experts. A major hurdle in developing these systems is the unavailability of annotated data sets of fundus images. Anatomical landmarks in the retina, such as the optic disc, macula, blood vessels, and ridge, are used to identify ROP characteristics. HVDROPDB is the first dataset to be published for the retinal structure segmentation of fundus images of preterm infants. It is prepared from two diverse imaging systems on the Indian population for segmenting the lesions mentioned above and annotated by a group of ROP experts. Each dataset contains retinal fundus images of premature infants with the ground truths prepared manually to assist researchers in developing explainable automated screening systems.

14.
Sensors (Basel) ; 23(12)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37420825

ABSTRACT

The milling machine serves an important role in manufacturing because of its versatility in machining. The cutting tool is a critical component of machining because it is responsible for machining accuracy and surface finishing, impacting industrial productivity. Monitoring the cutting tool's life is essential to avoid machining downtime caused due to tool wear. To prevent the unplanned downtime of the machine and to utilize the maximum life of the cutting tool, the accurate prediction of the remaining useful life (RUL) cutting tool is essential. Different artificial intelligence (AI) techniques estimate the RUL of cutting tools in milling operations with improved prediction accuracy. The IEEE NUAA Ideahouse dataset has been used in this paper for the RUL estimation of the milling cutter. The accuracy of the prediction is based on the quality of feature engineering performed on the unprocessed data. Feature extraction is a crucial phase in RUL prediction. In this work, the authors considers the time-frequency domain (TFD) features such as short-time Fourier-transform (STFT) and different wavelet transforms (WT) along with deep learning (DL) models such as long short-term memory (LSTM), different variants of LSTN, convolutional neural network (CNN), and hybrid models that are a combination of CCN with LSTM variants for RUL estimation. The TFD feature extraction with LSTM variants and hybrid models performs well for the milling cutting tool RUL estimation.


Subject(s)
Deep Learning , Tool Use Behavior , Artificial Intelligence , Commerce , Engineering
15.
Brain Inform ; 10(1): 18, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37524933

ABSTRACT

Human behaviour reflects cognitive abilities. Human cognition is fundamentally linked to the different experiences or characteristics of consciousness/emotions, such as joy, grief, anger, etc., which assists in effective communication with others. Detection and differentiation between thoughts, feelings, and behaviours are paramount in learning to control our emotions and respond more effectively in stressful circumstances. The ability to perceive, analyse, process, interpret, remember, and retrieve information while making judgments to respond correctly is referred to as Cognitive Behavior. After making a significant mark in emotion analysis, deception detection is one of the key areas to connect human behaviour, mainly in the forensic domain. Detection of lies, deception, malicious intent, abnormal behaviour, emotions, stress, etc., have significant roles in advanced stages of behavioral science. Artificial Intelligence and Machine learning (AI/ML) has helped a great deal in pattern recognition, data extraction and analysis, and interpretations. The goal of using AI and ML in behavioral sciences is to infer human behaviour, mainly for mental health or forensic investigations. The presented work provides an extensive review of the research on cognitive behaviour analysis. A parametric study is presented based on different physical characteristics, emotional behaviours, data collection sensing mechanisms, unimodal and multimodal datasets, modelling AI/ML methods, challenges, and future research directions.

16.
Comput Biol Med ; 163: 107140, 2023 09.
Article in English | MEDLINE | ID: mdl-37315380

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder. Various symptoms and diagnostic tests are used in combination for the diagnosis of PD; however, accurate diagnosis at early stages is difficult. Blood-based markers can support physicians in the early diagnosis and treatment of PD. In this study, we used Machine Learning (ML) based methods for the diagnosis of PD by integrating gene expression data from different sources and applying explainable artificial intelligence (XAI) techniques to find the significant set of gene features contributing to diagnosis. We utilized the Least Absolute Shrinkage and Selection Operator (LASSO), and Ridge regression for the feature selection process. We utilized state-of-the-art ML techniques for the classification of PD cases and healthy controls. Logistic regression and Support Vector Machine showed the highest diagnostic accuracy. SHapley Additive exPlanations (SHAP) based global interpretable model-agnostic XAI method was utilized for the interpretation of the Support Vector Machine model. A set of significant biomarkers that contributed to the diagnosis of PD were identified. Some of these genes are associated with other neurodegenerative diseases. Our results suggest that the utilization of XAI can be useful in making early therapeutic decisions for the treatment of PD. The integration of datasets from different sources made this model robust. We believe that this research article will be of interest to clinicians as well as computational biologists in translational research.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Artificial Intelligence , Machine Learning , Algorithms , Gene Expression Profiling
17.
Healthc Anal (N Y) ; 3: 100192, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37223223

ABSTRACT

The unexpected and rapid spread of the COVID-19 pandemic has amplified the acceptance of remote healthcare systems such as telemedicine. Telemedicine effectively provides remote communication, better treatment recommendation, and personalized treatment on demand. It has emerged as the possible future of medicine. From a privacy perspective, secure storage, preservation, and controlled access to health data with consent are the main challenges to the effective deployment of telemedicine. It is paramount to fully overcome these challenges to integrate the telemedicine system into healthcare. In this regard, emerging technologies such as blockchain and federated learning have enormous potential to strengthen the telemedicine system. These technologies help enhance the overall healthcare standard when applied in an integrated way. The primary aim of this study is to perform a systematic literature review of previous research on privacy-preserving methods deployed with blockchain and federated learning for telemedicine. This study provides an in-depth qualitative analysis of relevant studies based on the architecture, privacy mechanisms, and machine learning methods used for data storage, access, and analytics. The survey allows the integration of blockchain and federated learning technologies with suitable privacy techniques to design a secure, trustworthy, and accurate telemedicine model with a privacy guarantee.

18.
Comput Intell Neurosci ; 2023: 4563145, 2023.
Article in English | MEDLINE | ID: mdl-36909977

ABSTRACT

Social media platforms play a key role in fostering the outreach of extremism by influencing the views, opinions, and perceptions of people. These platforms are increasingly exploited by extremist elements for spreading propaganda, radicalizing, and recruiting youth. Hence, research on extremism detection on social media platforms is essential to curb its influence and ill effects. A study of existing literature on extremism detection reveals that it is restricted to a specific ideology, binary classification with limited insights on extremism text, and manual data validation methods to check data quality. In existing research studies, researchers have used datasets limited to a single ideology. As a result, they face serious issues such as class imbalance, limited insights with class labels, and a lack of automated data validation methods. A major contribution of this work is a balanced extremism text dataset, versatile with multiple ideologies verified by robust data validation methods for classifying extremism text into popular extremism types such as propaganda, radicalization, and recruitment. The presented extremism text dataset is a generalization of multiple ideologies such as the standard ISIS dataset, GAB White Supremacist dataset, and recent Twitter tweets on ISIS and white supremacist ideology. The dataset is analyzed to extract features for the three focused classes in extremism with TF-IDF unigram, bigrams, and trigrams features. Additionally, pretrained word2vec features are used for semantic analysis. The extracted features in the proposed dataset are evaluated using machine learning classification algorithms such as multinomial Naïve Bayes, support vector machine, random forest, and XGBoost algorithms. The best results were achieved by support vector machine using the TF-IDF unigram model confirming 0.67 F1 score. The proposed multi-ideology and multiclass dataset shows comparable performance to the existing datasets limited to single ideology and binary labels.


Subject(s)
Algorithms , Social Media , Humans , Adolescent , Bayes Theorem , Machine Learning , Random Forest
19.
Article in English | MEDLINE | ID: mdl-36901255

ABSTRACT

A breast tissue biopsy is performed to identify the nature of a tumour, as it can be either cancerous or benign. The first implementations involved the use of machine learning algorithms. Random Forest and Support Vector Machine (SVM) were used to classify the input histopathological images into whether they were cancerous or non-cancerous. The implementations continued to provide promising results, and then Artificial Neural Networks (ANNs) were applied for this purpose. We propose an approach for reconstructing the images using a Variational Autoencoder (VAE) and the Denoising Variational Autoencoder (DVAE) and then use a Convolutional Neural Network (CNN) model. Afterwards, we predicted whether the input image was cancerous or non-cancerous. Our implementation provides predictions with 73% accuracy, which is greater than the results produced by our custom-built CNN on our dataset. The proposed architecture will prove to be a new field of research and a new area to be explored in the field of computer vision using CNN and Generative Modelling since it incorporates reconstructions of the original input images and provides predictions on them thereafter.


Subject(s)
Neoplasms , Neural Networks, Computer , Algorithms , Machine Learning , Image Processing, Computer-Assisted/methods
20.
J Healthc Eng ; 2023: 3563696, 2023.
Article in English | MEDLINE | ID: mdl-36776955

ABSTRACT

The primary objective of this proposed framework work is to detect and classify various lung diseases such as pneumonia, tuberculosis, and lung cancer from standard X-ray images and Computerized Tomography (CT) scan images with the help of volume datasets. We implemented three deep learning models namely Sequential, Functional & Transfer models and trained them on open-source training datasets. To augment the patient's treatment, deep learning techniques are promising and successful domains that extend the machine learning domain where CNNs are trained to extract features and offers great potential from datasets of images in biomedical application. Our primary aim is to validate our models as a new direction to address the problem on the datasets and then to compare their performance with other existing models. Our models were able to reach higher levels of accuracy for possible solutions and provide effectiveness to humankind for faster detection of diseases and serve as best performing models. The conventional networks have poor performance for tilted, rotated, and other abnormal orientation and have poor learning framework. The results demonstrated that the proposed framework with a sequential model outperforms other existing methods in terms of an F1 score of 98.55%, accuracy of 98.43%, recall of 96.33% for pneumonia and for tuberculosis F1 score of 97.99%, accuracy of 99.4%, and recall of 98.88%. In addition, the functional model for cancer outperformed with an accuracy of 99.9% and specificity of 99.89% and paves way to less number of trained parameters, leading to less computational overhead and less expensive than existing pretrained models. In our work, we implemented a state-of-the art CNN with various models to classify lung diseases accurately.


Subject(s)
Deep Learning , Pneumonia , Humans , Algorithms , Machine Learning , Pneumonia/diagnostic imaging , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...