Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38675082

ABSTRACT

This article presents the results of tests carried out to assess the condition of PP-modified concrete. The tests were carried out on samples previously stored at ambient temperature and exposed to temperatures corresponding to fire conditions-300 °C, 450 °C, and 600 °C. Axial compression tests of cube-shaped samples and three-point bending of beams were carried out. During strength tests, acoustic emission (AE) signals were recorded and the force and deformation were measured. Recorded AE events were clustered using the k-means algorithm. The analysis of the test results allowed for the identification of signals characteristic of the individual stages of the material destruction process. Differences in the methods of destruction of samples stored in ambient conditions and those exposed to fire temperatures were also indicated. While loading the samples, measurements were carried out using the digital image correlation (DIC) method, which enabled the determination of displacements. Based on the results of the laboratory tests, a numerical model was developed. The results obtained using different research methods (DIC and FEM) were compared. Tomographic examinations and observations of the microstructure of the tested materials were also carried out. The analyses carried out allowed for a reliable assessment of the possibility of using the acoustic emission method to detect destructive processes and assess the technical condition of PP-modified concrete. It was confirmed that the acoustic emission method, due to differences at low load levels, can be a useful technique for assessing the condition of PP-modified concrete after exposure to fire temperatures. So far, no research directions in a similar field have been identified.

2.
Materials (Basel) ; 15(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36295333

ABSTRACT

The aim of the research was to check the possibility of using the non-destructive method of acoustic emission to assess the condition of concrete without dispersed reinforcement and with various additions of curved steel fibres, during three-point bending. An important aspect of the research proposed in the article is the use of a hybrid method of analysis, which involves complementing the results of strength tests, the results of numerical calculations and the results of strain distributions recorded with a digital image correlation system (DIC System, in this research GOM Suite optical system). The operation of the concrete material under load, depending on the amount of fibres added, is reflected in the recorded acoustic emission (AE) signals. The differences concern the number of signals of individual classes and their distribution over time. The differences exist for both low and high load values, which confirms the possibility of using the acoustic emission method to monitor the condition of the material. It was shown that the numerically determined effective stress levels decreased as the proportion of steel fibres in the concrete increased, while the maximum levels of the first principal stresses increased. During the analyses, a preliminary comparison of the deformation results obtained using the finite element method and the DIC System was also carried out.

3.
Materials (Basel) ; 14(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34947359

ABSTRACT

In the case of existing prestressed concrete structures, information about the actual state of prestressing is an important basis for determining their load-carrying capacity, as well as remaining service lifetime. This is even more important in the case of existing prestressed concrete bridges, which are exposed to a more aggressive environment than the other prestressed concrete structures. The level of prestressing is affected and reduced by prestress losses at a given time. In calculating the internal forces and stresses, required for the assessment of the Ultimate Limit State and the Serviceability Limit State, it is necessary to know not only the prestressing level but also the cross-sectional area of the prestressing steel (wire, strand or cable), which can change in time due to corrosion. In practice, in the case of the pre-tensioned concrete members, it has often happened in the past that cable ducts have been grouted only partially, or not at all, due to poor grouting technology. Experts did not realize what this could cause in the future-the penetration of water with aggressive agents directly into the cable duct and consequently corrosion of the prestressing steel, which means not increased protection of the steel, but rather acceleration of degradation. On the other hand, in many cases, corrosion also occurs in ducts that are not grouted and no water has entered them. This paper deals with this phenomenon-the formation of corrosion of prestressing steel in cable ducts in ungrouted ducts due to moisture. This problem was investigated experimentally and numerically in the simulation program ESP-r. Experimental measurements and numerical simulations have shown that the water vapor condenses in the cable ducts, which can subsequently cause corrosion of the prestressing steel.

4.
Materials (Basel) ; 14(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34443178

ABSTRACT

The concrete cover is the basic protection of the reinforcement against the influence of external factors that may lead to its corrosion. Its effectiveness depends mainly on the composition of the concrete mix, including the cement used. Depending on external environmental factors that may aggressively affect the structure, various types of cements and concrete admixtures are recommended. The paper presents the results of tests that allow us to assess the effect of the type of cement used and the air-entraining agent on the effectiveness of the concrete cover as a layer protecting the reinforcement against corrosion. In order to initiate the corrosion process, the reinforced concrete specimens were subjected to cycles of freezing and thawing in a sodium chloride solution. The degree of advancement of the corrosion process was investigated using the electrochemical galvanostatic pulse technique. Additionally, the microstructure of specimens taken from the cover was observed under a scanning electron microscope. The research has shown that in the situation of simultaneous action of chloride ions and freezing cycles, in order to effectively protect the reinforcement against corrosion, the application of both blast-furnace slag cement and an air-entraining agent performed the best.

5.
Materials (Basel) ; 13(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260664

ABSTRACT

Structures and bridges are being designed on the proposed and requested design lifetime of 50 to 100 years. In practice, one can see that the real lifetime of structures and bridges is shorter in many cases, in some special cases extremely shorter. The reasons for the lifetime shortening can be increased of the load cases (e.g., due to traffic on bridges, or due to other uses of a structure), using the material of lower quality, implementation of new standards and codes according to Eurocode replacing older ones. During the whole lifetime the structures must be maintained to fulfil the code requests. If the constructions are not able to fulfil the Ultimate Limit States (ULS) and the Serviceability Limit State (SLS), the structures or bridges have to be strengthened (whole or its elements). The purpose of the paper is the presentation of using a layer of the fibre concrete for a columns' strengthening. Using the fibre reinforced concrete (FRC) of higher tensile strength makes it possible to increase the load-bearing capacity of the cross-section the column. The contact between the old concrete (core of column) and newly added layer (around column) is very important for using that method of strengthening. In the article, there is also a comparison of the surface modification methods.

6.
Materials (Basel) ; 13(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138246

ABSTRACT

Reliability is one of the most significant requirements for structures given in Eurocodes. Thus, the specific level of safety, serviceability, and durability have to be satisfied to fulfill the reliability of structures. In the case of reinforced concrete (RC) members, the corrosion of reinforcement is not assumed in the stage of structure design, which is in contrast with the structures in service, where the corrosion of reinforcement can significantly decrease their diameter ø in time. In these cases, the moment resistance in time MRd(t) decreases during the designed lifetime Td of a structure. The corrosion speed is as a basis for the calculation of moment resistance in time MRd(t), i.e., a first-year corrosion rate rcorr and a corrosion model as well. The corrosion itself is a very complicated issue, so the first-year corrosion rate rcorr and also the corrosion model can be different under various conditions in Slovakia. The paper is focused not only to determine the corrosion speed (first-year corrosion rate rcorr and the corrosion model) and parametric study of the moment resistance in time MRd(t) under various conditions in Slovakia but also shows an overview on some parameters that may influence the corrosion process.

7.
Materials (Basel) ; 12(13)2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31252676

ABSTRACT

The tempcore process is implemented in rolling mills to produce high strength reinforcing steel. Besides being used as reinforcement, rebars are also used as the base material for the manufacturing of anchor bolts. The mechanical properties of reinforcement bars used in Europe are assessed in accordance with Eurocode without the recommendations for cast-in anchor bolts. The material properties of Tempcore rebars are not homogenous over the bar cross section. The European Assessment Document (EAD) for the cast-in anchor bolts does not exactly specify the mechanical properties of the thread part. The aim of these experiments is to show the different mechanical properties of rebars and their thread parts. The experiments were performed on rebars modified by peeling to characterize the reduction of diameter in a thread part. As a possible way to predict mechanical properties in a non-destructive way, the hardness tests were performed. Next, the application of the correlation relationship between hardness and tensile strength has been determined. The paper formulates preliminary recommendations for assessment of the cast-in anchor bolts in practice.

SELECTION OF CITATIONS
SEARCH DETAIL
...