Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 246: 125669, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37406901

ABSTRACT

Tissue engineering research has undergone to a revolutionary improvement, thanks to technological advancements, such as the introduction of bioprinting technologies. The ability to develop suitable customized biomaterial inks/bioinks, with excellent printability and ability to promote cell proliferation and function, has a deep impact on such improvements. In this context, printing inks based on chitosan and its derivatives have been instrumental. Thus, the current review aims at providing a comprehensive overview on chitosan-based materials as suitable inks for 3D/4D (bio)printing and their applicability in creating advanced drug delivery platforms and tissue engineered constructs. Furthermore, relevant strategies to improve the mechanical and biological performances of this biomaterial are also highlighted.


Subject(s)
Chitosan , Tissue Engineering , Printing, Three-Dimensional , Biocompatible Materials , Drug Delivery Systems , Tissue Scaffolds
2.
Comput Biol Chem ; 66: 11-20, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27866051

ABSTRACT

The gene 30S ribosomal protein S2 (30S2) is identified as a potential drug and vaccine target for Pneumonia. Its structural characterization is an important to understand the mechanism of action for identifying its receptor and/or other binding partners. The comparative genomics and proteomics studies are useful for structural characterization of 30S2 in C. Pneumoniae using different bioinformatics tools and web servers. In this study, the protein 30S2 structure was modelled and validated by Ramachandran plot. It is found that the modelled protein under most favoured "core" region was 88.7% and overall G-factor statistics with average score was -0.20. However, seven sequential motifs have been identified for 30S2 with reference codes (PR0095, PF0038, TIGR01012, PTHR11489, SSF52313 and PTHR11489). In addition, seven structural highly conserved residues have been identified in the large cleft are Lys160, Gly161and Arg162 with volume 1288.83Å3 and average depth of the cleft was 10.75Å. Moreover, biological functions, biochemical process and structural constituents of ribosome are also explored. The study will be helped us to understand the sequential, structural, functional and evolutionary clues of unknown proteins available in C. Pneumoniae.


Subject(s)
Chlamydophila pneumoniae/chemistry , Pneumonia, Bacterial/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Amino Acid Sequence , Binding Sites , DNA/metabolism , Models, Molecular , Protein Conformation , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...