Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol ; 264(2 Pt 1): G319-24, 1993 Feb.
Article in English | MEDLINE | ID: mdl-8447415

ABSTRACT

Ileum displays little active transcellular calcium (Ca2+) absorption but is credited with the bulk of Ca2+ absorbed in vivo. We examined the effect of taurodeoxycholic acid (TDC, 2 mM), a bile salt, on mannitol (MN, a marker of intercellular solute traffic) and Ca2+ fluxes in rat ileum. In the absence of electrochemical gradients between the mucosal (M) and serosal (S) bathing media in an Ussing chamber, net flux (Jnet) was observed in the S-to-M direction for both MN and Ca2+, i.e., the unidirectional secretory S-to-M flux (Js-->m) exceeded the absorptive M-to-S flux (Jm-->s). Mucosal TDC caused simultaneous increase in transepithelial conductance and Js-->m for both MN and Ca2+. This was followed by even greater increases in MN and Ca2+ Jm-->s, so that ultimately Jm-->s equaled Js-->m in each case. In control tissue, Js-->m for Ca2+ appeared to permeate exclusively through the intercellular MN pathway while part of Jm-->s for Ca2+ appeared to traverse through a non-MN route. After the TDC-induced increase in intercellular solute permeability, both Ca2+ fluxes appeared to traverse through the aqueous MN conduit. During the postprandial state, the presence of bile salts and the relative abundance of Ca2+ in ileal lumen can cause bulk Ca2+ absorption through the intercellular pathway.


Subject(s)
Calcium/metabolism , Ileum/metabolism , Intestinal Mucosa/metabolism , Taurodeoxycholic Acid/pharmacology , Absorption/drug effects , Animals , Biological Transport/drug effects , Electrophysiology , Ileum/physiology , Intestinal Mucosa/physiology , Male , Mannitol/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...