Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 43(8): 1897-1910, 2020 08.
Article in English | MEDLINE | ID: mdl-32449181

ABSTRACT

In habitats with low water availability, a fundamental challenge for plants will be to maximize photosynthetic C-gain while minimizing transpirational water-loss. This trade-off between C-gain and water-loss can in part be achieved through the coordination of leaf-level photosynthetic and hydraulic traits. To test the relationship of photosynthetic C-gain and transpirational water-loss, we grew, under common growth conditions, 18 C4 grasses adapted to habitats with different mean annual precipitation (MAP) and measured leaf-level structural and anatomical traits associated with mesophyll conductance (gm ) and leaf hydraulic conductance (Kleaf ). The C4 grasses adapted to lower MAP showed greater mesophyll surface area exposed to intercellular air spaces (Smes ) and adaxial stomatal density (SDada ) which supported greater gm . These grasses also showed greater leaf thickness and vein-to-epidermis distance, which may lead to lower Kleaf . Additionally, grasses with greater gm and lower Kleaf also showed greater photosynthetic rates (Anet ) and leaf-level water-use efficiency (WUE). In summary, we identify a suite of leaf-level traits that appear important for adaptation of C4 grasses to habitats with low MAP and may be useful to identify C4 species showing greater Anet and WUE in drier conditions.


Subject(s)
Plant Leaves/physiology , Poaceae/physiology , Adaptation, Physiological , Ecosystem , Mesophyll Cells/physiology , Photosynthesis , Plant Leaves/anatomy & histology , Poaceae/anatomy & histology
2.
Physiol Plant ; 147(4): 524-40, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22924772

ABSTRACT

The oxygen protection system for the bacterial nitrogen-fixing enzyme complex nitrogenase in actinorhizal nodules of Casuarina glauca resembles that of legume nodules: infected cells contain large amounts of the oxygen-binding protein hemoglobin and are surrounded by an oxygen diffusion barrier. However, while in legume nodules infected cells are located in the central tissue, actinorhizal nodules are composed of modified lateral roots with infected cells in the expanded cortex. Since an oxygen diffusion barrier around the entire cortex would also block oxygen access to the central vascular system where it is required to provide energy for transport processes, here each individual infected cell is surrounded with an oxygen diffusion barrier. In order to assess the effect of these oxygen diffusion barriers on oxygen supply for energy production for transport processes, apoplastic and symplastic sugar transport pathways in C. glauca nodules were examined. The results support the idea that sugar transport to and within the nodule cortex relies to a large extent on the less energy-demanding symplastic mechanism. This is in line with the assumption that oxygen access to the nodule vascular system is substantially restricted. In spite of this dependence on symplastic transport processes to supply sugars to infected cells, plasmodesmal connections between infected cells, and to a lesser degree with uninfected cells, were reduced during the differentiation of infected cells.


Subject(s)
Carbohydrate Metabolism , Cell Wall/metabolism , Lignin/metabolism , Magnoliopsida/metabolism , Magnoliopsida/microbiology , Plasmodesmata/metabolism , Biological Transport , Carbohydrates , Frankia , Glucosyltransferases/metabolism , Magnoliopsida/cytology , Magnoliopsida/genetics , Nitrogen Fixation , Oxygen/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Polysaccharides/metabolism
3.
Planta ; 233(1): 139-52, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20938679

ABSTRACT

To understand carbon partitioning in roots and nodules of Datisca glomerata, activities of sucrose-degrading enzymes and sugar transporter expression patterns were analyzed in both organs, and plasmodesmal connections between nodule cortical cells were examined by transmission electron microscopy. The results indicate that in nodules, the contribution of symplastic transport processes is increased in comparison to roots, specifically in infected cells which develop many secondary plasmodesmata. Invertase activities are dramatically reduced in nodules as compared to roots, indicating that here the main enzyme responsible for the cleavage of sucrose is sucrose synthase. A high-affinity, low-specificity monosaccharide transporter whose expression is induced in infected cells prior to the onset of bacterial nitrogen fixation, and which has an unusually low pH optimum and may be involved in turgor control or hexose retrieval during infection thread growth.


Subject(s)
Carbohydrate Metabolism , Cucurbitaceae/metabolism , Nitrogen Fixation/physiology , Plasmodesmata/metabolism , Root Nodules, Plant/metabolism , Cucurbitaceae/cytology , Cucurbitaceae/genetics , Cucurbitaceae/ultrastructure , Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Kinetics , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Plasmodesmata/enzymology , Plasmodesmata/ultrastructure , RNA, Messenger/genetics , RNA, Messenger/metabolism , Root Nodules, Plant/enzymology , Root Nodules, Plant/genetics , Saccharomyces cerevisiae/metabolism
4.
Funct Plant Biol ; 36(9): 770-782, 2009 Sep.
Article in English | MEDLINE | ID: mdl-32688687

ABSTRACT

The objective of this study was to characterise photosynthesis in terrestrial non-Kranz (NK) C4 species, Bienertia sinuspersici Akhani and Suaeda aralocaspica (Bunge) Freitag & Schütze (formerly Borszczowia aralocaspica), compared with closely related Kranz type C4 Suaeda eltonica Iljin and Suaeda taxifolia Standley, and C3 species Suaeda heterophylla Bunge and Suaeda maritima Dumort in subfamily Suaedoideae (Chenopodiaceae). Traditional Kranz type C4 photosynthesis has several advantages over C3 photosynthesis under certain environmental conditions by suppressing photorespiration. The different photosynthetic types were evaluated under varying levels of CO2 and light at 25°C. Both NK and Kranz type species had C4 type CO2 compensation points (corrected for dark-type respiration) and half maximum saturation of photosynthesis at similar levels of atmospheric CO2 (average of 145 µbar for the C4 species v. 330 µbar CO2 for C3 species) characteristic of C4 photosynthesis. CO2 saturated rates of photosynthesis per unit chlorophyll was higher in the C3 (at ~2.5 current ambient CO2 levels) than the C4 species, which is likely related to their higher Rubisco content. The amount of Rubisco as a percentage of total protein was similar in NK and Kranz type species (mean 10.2%), but much lower than in the C3 species (35%). Light saturated rates of CO2 fixation per unit leaf area at 25°C and 340 µbar CO2 were higher in the Kranz species and the NK C4 S. aralocaspica than in the C3 species. In response to light at 340 µbar CO2, there was a difference in rates of photosynthesis per unit Rubisco with NK > Kranz > C3 species. There were no significant differences between the three photosynthetic types in maximum quantum yields, convexity of light response curves, and light compensation points at 25°C. The water use efficiency (CO2 fixed per water transpired) at 340 µbar CO2, 25°C and 1000 µmol quanta m-2 s-1 was on average 3-fold higher in the C4 (NK and Kranz) compared with the C3 species. The results show that the NK species have several C4 traits like the Kranz type species in subfamily Suaedoideae.

5.
Am J Bot ; 92(11): 1784-95, 2005 Nov.
Article in English | MEDLINE | ID: mdl-21646096

ABSTRACT

The terrestrial plant Bienertia cycloptera has been shown to accomplish C(4) photosynthesis within individual chlorenchyma cells by spatially separating the phases of carbon assimilation into distinct peripheral and central compartments. In this study, anatomical, physiological, and biochemical techniques were used to determine how this unique compartmentation develops. Western blots show ribulose-1,5-bisphosphate carboxylase (Rubisco) (chloroplastic) is present in the youngest leaves and increases during development, while levels of C(4) enzymes-pyruvate,Pi dikinase (chloroplastic), phosphoenolpyruvate carboxylase (PEPC) (cytosol), and NAD-malic enzyme (mitochondrial)-increase later in development. Immunolocalization confirmed this for Rubisco and PEPC. The youngest chlorenchyma cells have a central nucleus surrounded by monomorphic granal chloroplasts containing Rubisco. Later stages show progressive development of a central cytoplasmic compartment enriched with chloroplasts and mitochondria and of a peripheral cytoplasm with chloroplasts. A complex reticulum of connections between the compartments also developed and was characterized. δ(13)C isotope analyses show mature leaves have distinct C(4)-type isotope composition, while the composition in younger leaves is "C(4)-like." Based on the results, this form of single-cell C(4) photosynthesis develops from a common pool of organelles through partitioning to separate compartments, and the development of biochemically and ultrastructurally dimorphic chloroplasts.

SELECTION OF CITATIONS
SEARCH DETAIL
...