Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 38(1): 80-89, 2020 01.
Article in English | MEDLINE | ID: mdl-31298767

ABSTRACT

The therapeutic potential of mesenchymal stem/stromal cells (MSCs) is limited by acquired senescence following prolonged culture expansion and high-passage numbers. However, the degree of cell senescence is dynamic, and cell-cell communication is critical to promote cell survival. MSC spheroids exhibit improved viability compared with monodispersed cells, and actin-rich tunneling nanotubes (TNTs) may mediate cell survival and other functions through the exchange of cytoplasmic components. Building upon our previous demonstration of TNTs bridging MSCs within these cell aggregates, we hypothesized that TNTs would influence the expression of senescence markers in MSC spheroids. We confirmed the existence of functional TNTs in MSC spheroids formed from low-passage, high-passage, and mixtures of low- and high-passage cells using scanning electron microscopy, confocal microscopy, and flow cytometry. The contribution of TNTs toward the expression of senescence markers was investigated by blocking TNT formation with cytochalasin D (CytoD), an inhibitor of actin polymerization. CytoD-treated spheroids exhibited decreases in cytosol transfer. Compared with spheroids formed solely of high-passage MSCs, the addition of low-passage MSCs reduced p16 expression, a known genetic marker of senescence. We observed a significant increase in p16 expression in high-passage cells when TNT formation was inhibited, establishing the importance of TNTs in MSC spheroids. These data confirm the restorative role of TNTs within MSC spheroids formed with low- and high-passage cells and represent an exciting approach to use higher-passage cells in cell-based therapies.


Subject(s)
Biomarkers/metabolism , Cellular Senescence/physiology , Mesenchymal Stem Cells/metabolism , Nanotubes/chemistry , Humans
2.
Adv Biosyst ; 3(12)2019 12.
Article in English | MEDLINE | ID: mdl-32270027

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) exhibit a rapid loss in osteogenic phenotype upon removal of osteoinductive cues, as commonly occurs during transplantation. Osteogenic differentiation can be more effectively but not fully maintained by aggregating MSCs into spheroids. Therefore, the development of effective strategies that prolong the efficacy of inductive growth factors would be advantageous for advancing cell-based therapies. To address this challenge, osteoinductive bone morphogenetic protein-2 (BMP-2) was adsorbed to osteoconductive hydroxyapatite (HA) nanoparticles for incorporation into MSC spheroids. MSC induction was evaluated in osteogenic conditions and retention of the osteogenic phenotype in the absence of other osteogenic cues. HA was more uniformly incorporated into spheroids at lower concentrations, while BMP-2 dosage was dependent upon initial morphogen concentration. MSC spheroids containing BMP-2-loaded HA nanoparticles exhibited greater alkaline phosphatase (ALP) activity and more uniform spatial expression of osteocalcin compared to spheroids with uncoated HA nanoparticles. Spheroids cultured in media containing soluble BMP-2 demonstrated differentiation only at the spheroid periphery. Furthermore, the osteogenic phenotype of MSC spheroids was better retained with BMP-2-laden HA upon the removal of soluble osteogenic cues. These findings represent a promising strategy for simultaneous delivery of osteoconductive and osteoinductive signals for enhancing MSC participation in bone formation.

3.
Nanoscale ; 9(39): 14907-14912, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28949360

ABSTRACT

Localized plasmonic structured illumination microscopy (LPSIM) is a recently developed super resolution technique that demonstrates immense potential via arrays of localized plasmonic antennas. Microlens microscopy represents another distinct approach for improving resolution by introducing a spherical lens with a large refractive index to boost the effective numerical aperture of the imaging system. In this paper, we bridge together the LPSIM and optically trapped spherical microlenses, for the first time, to demonstrate a new super resolution technique for surface imaging. By trapping and moving polystyrene and TiO2 microspheres with optical tweezers on top of a LPSIM substrate, the new imaging system has achieved a higher NA and improved resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...