Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RNA Biol ; 21(1): 14-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38797925

ABSTRACT

As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.


Subject(s)
Flavivirus , Genome, Viral , Nucleic Acid Conformation , RNA, Viral , Virus Replication , Flavivirus/genetics , Flavivirus/physiology , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Humans , Flavivirus Infections/virology , Virus Assembly , Animals , Protein Biosynthesis
2.
ACS Synth Biol ; 7(11): 2480-2484, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30441908

ABSTRACT

The Single Domain Antibody Database, or sdAb-DB, ( www.sdab-db.ca ) is the first freely available repository for single domain antibodies and related classes of proteins. Due to their small size, modular structure, and ease of expression, single domain antibodies (sdAb) have a wide range of applications, including as a rational design tool, and are therefore of great interest for synthetic biologists and bioengineers. However, to enable effective use and sharing of existing sdAbs, including those with engineered functions ( e.g., fusions with fluorescent proteins), as well as the rational design and engineering of new sdAbs, it is necessary to have access to sequences and experimental data. We have therefore developed a publicly available, sdAb-focused database, providing access to manually curated sdAb data from protein databases, published scientific articles, and user submissions. The sdAb-DB is an open-source repository and sharing platform for the sdAb community, providing access to performance data and basic bioinformatic tools for use with previously described and validated sdAbs, as well as for the engineering of new sdAb-based designs and proteins.


Subject(s)
Databases, Protein , Single-Domain Antibodies/chemistry , Bioengineering , Synthetic Biology , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...