Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biomed Phys Eng Express ; 8(3)2022 04 05.
Article in English | MEDLINE | ID: mdl-35320794

ABSTRACT

Purpose. The radiology department faces a large number of reconstruction algorithms and kernels during their computed tomography (CT) optimization process. These reconstruction methods are proprietary and ensuring consistent image quality between scanners is becoming increasingly difficult. This study contributes to solving this challenge in CT image quality harmonization by modifying and evaluating a reconstruction algorithm and kernel matching scheme.Methods. The Catphan 600 phantom was scanned with six different CT scanners from four vendors. The phantom was scanned with volumetric CT dose indices (CTDIvols) of 10 mGy and 40 mGy, and the data were reconstructed using 1 mm and 5 mm slices with each combination of reconstruction algorithm, body region kernel, and iterative and deep learning reconstruction strength. A matching scheme developed in previous research, which utilizes the noise power spectrum (NPS) and modulation transfer function (MTF), was modified based on our organization's needs and used to identify the matching reconstruction algorithms and kernels between different scanners.Results. The matching paradigm produced good matching results, and the mean ± standard deviation (median) matching function values for the different acquisition settings were (a value of 1 indicates a perfect match): CTDIvol 10 mGy, 1 mm slice: 0.78 ± 0.31 (0.94); CTDIvol 10 mGy, 5 mm slice: 0.75 ± 0.33 (0.93); CTDIvol 40 mGy, 1 mm slice: 0.81 ± 0.28 (0.95); CTDIvol 40 mGy, 5 mm slice: 0.75 ± 0.33 (0.93). In general, soft reconstruction kernels, i.e., noise-reducing kernels that reduce sharpness, of one vendor were matched with the soft kernels of another vendor, and vice versa for sharper kernels. Conclusions. Combined quantitative assessment of NPS and MTF allows effective strategy for harmonization of technical image quality between different CT scanners. A software was also shared to support CT image quality harmonization in other institutions.


Subject(s)
Algorithms , Tomography, X-Ray Computed , Phantoms, Imaging , Signal-To-Noise Ratio , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/methods
2.
BMC Res Notes ; 15(1): 103, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296333

ABSTRACT

OBJECTIVES: Gunshot wounds are frequently studied using computed tomography (CT) to examine tissue damage. In this study, we aimed to test the potential of post-mortem CT (PMCT) in shooting distance estimation at distances 0-100 cm. We hypothesized that in addition to the wound channel, we could also potentially detect tissue damage caused by muzzle pressure on PMCT. RESULTS: A total of 59 gunshot wounds (23 contact shots, 21 close-range shots, 15 distant shots) were inflicted on eight piglet carcasses with a .22 Long Rifle handgun. PMCT scans were obtained using clinical equipment, and they were evaluated for wound characteristics by visual inspection and numeric measurements. In our data, contact shots could be clearly distinguished from close-range and distant shots by a hyperdense ring-shaped area surrounding the outermost part of the wound channel. Close-range and distant shot wounds did not have this feature and were difficult to distinguish from each other. The mean wound channel diameter ranged from 3.4 to 5.4 mm, being smallest in contact shots and largest in distant shots. These preliminary findings suggest that PMCT may aid the estimation of shooting distance. As this study only addressed low velocity gunshot wounds in carcasses, further studies are warranted.


Subject(s)
Forensic Sciences , Wounds, Gunshot , Animals , Cadaver , Physical Examination , Swine , Tomography, X-Ray Computed , Wounds, Gunshot/diagnostic imaging
3.
Radiat Prot Dosimetry ; 198(4): 229-237, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35313335

ABSTRACT

The aim of this study was to evaluate how out-of-plane patient shielding affects radiation exposure parameters and tube current modulation on different vendors' computed tomography (CT) scanners. Helical CT scans were performed using two homogenous phantoms to mimic patient attenuation. Four CT scanners from three vendors were investigated by varying the distance of the patient shield from the border of the imaging volume. Scans were performed with a shield placed before and after the localizer. Changes in volume computed tomography dose index (CTDIvol), dose-length product (DLP) and tube current-time products were studied. Out-of-field lead shield increased the CTDIvol and DLP values for each scanner at least for one scan setting when the shield was present in the localizer. The most notable changes were recorded with >1.3 pitch values when the shield was closest to the scanned volume (2.5 cm), and the scan direction was towards the shield. The usage of patient shields in the localizer CT scans can disturb TCM even when placed 7.5 cm away from the edge of the scan.


Subject(s)
Radiation Exposure , Humans , Phantoms, Imaging , Radiation Dosage , Tomography Scanners, X-Ray Computed , Tomography, X-Ray Computed/methods
4.
Biomed Phys Eng Express ; 8(1)2021 12 31.
Article in English | MEDLINE | ID: mdl-34911047

ABSTRACT

In interior cardiac computed tomography (CT) imaging, the x-ray beam is collimated to a limited field-of-view covering the heart volume, which decreases the radiation exposure to surrounding tissues. Spectral CT enables the creation of virtual monochromatic images (VMIs) through a computational material decomposition process. This study investigates the utility of VMIs for beam hardening (BH) reduction in interior cardiac CT, and further, the suitability of VMIs for coronary artery calcium (CAC) scoring and volume assessment is studied using spectral photon counting detector CT (PCD-CT).Ex vivocoronary artery samples (N = 18) were inserted in an epoxy rod phantom. The rod was scanned in the conventional CT geometry, and subsequently, the rod was positioned in a torso phantom and re-measured in the interior PCD-CT geometry. The total energy (TE) 10-100 keV reconstructions from PCD-CT were used as a reference. The low energy 10-60 keV and high energy 60-100 keV data were used to perform projection domain material decomposition to polymethyl methacrylate and calcium hydroxylapatite basis. The truncated basis-material sinograms were extended using the adaptive detruncation method. VMIs from 30-180 keV range were computed from the detruncated virtual monochromatic sinograms using filtered back projection. Detrending was applied as a post-processing method prior to CAC scoring. The results showed that BH artefacts from the exterior structures can be suppressed with high (≥100 keV) VMIs. With appropriate selection of the monoenergy (46 keV), the underestimation trend of CAC scores and volumes shown in Bland-Altman (BA) plots for TE interior PCD-CT was mitigated, as the BA slope values were -0.02 for the 46 keV VMI compared to -0.21 the conventional TE image. To conclude, spectral PCD-CT imaging using VMIs could be applied to reduce BH artefacts interior CT geometry, and further, optimal selection of VMI may improve the accuracy of CAC scoring assessment in interior PCD-CT.


Subject(s)
Artifacts , Tomography, X-Ray Computed , Cadaver , Humans , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods
5.
J Med Imaging (Bellingham) ; 8(5): 052102, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33718518

ABSTRACT

Purpose: Coronary artery calcium (CAC) scoring with computed tomography (CT) has been proposed as a screening tool for coronary artery disease, but concerns remain regarding the radiation dose of CT CAC scoring. Photon counting detectors and iterative reconstruction (IR) are promising approaches for patient dose reduction, yet the preservation of CAC scores with IR has been questioned. The purpose of this study was to investigate the applicability of IR for quantification of CAC using a photon counting flat-detector. Approach: We imaged a cardiac rod phantom with calcium hydroxyapatite (CaHA) inserts with different noise levels using an experimental photon counting flat-detector CT setup to simulate the clinical CAC scoring protocol. We applied filtered back projection (FBP) and two IR algorithms with different regularization strengths. We compared the air kerma values, image quality parameters [noise magnitude, noise power spectrum, modulation transfer function (MTF), and contrast-to-noise ratio], and CaHA quantification accuracy between FBP and IR. Results: IR regularization strength influenced CAC scores significantly ( p < 0.05 ). The CAC volumes and scores between FBP and IRs were the most similar when the IR regularization strength was chosen to match the MTF of the FBP reconstruction. Conclusion: When the regularization strength is selected to produce comparable spatial resolution with FBP, IR can yield comparable CAC scores and volumes with FBP. Nonetheless, at the lowest radiation dose setting, FBP produced more accurate CAC volumes and scores compared to IR, and no improved CAC scoring accuracy at low dose was demonstrated with the utilized IR methods.

6.
J Appl Clin Med Phys ; 21(10): 210-217, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32959511

ABSTRACT

PURPOSE: To investigate the replacement of conventional grid by air gap in axiolateral hip radiographs. The optimal air gap distance was studied with respect to radiation dose and image quality using phantom images, as well as 26 patient axiolateral hip radiographs. METHODS: The CDRAD phantom, along with polymethylmethacrylate slabs with thicknesses of 10.0, 14.6, and 20.0 cm was employed. The inverse image quality index and dose area product (DAP), as well as their combination, so called figure-of-merit (FOM) parameter, were evaluated for these images, with air gaps from 20 to 50 cm in increments of 10 cm. Images were compared to those acquired using a conventional grid utilized in hip radiography. Radiation dose was measured and kept constant at the surface of the detector by using a reference dosimeter. Verbal consent was asked from 26 patients to participate to the study. Air gap distances from 20 to 50 cm and tube current-time products from 8 to 50 mAs were employed. Exposure index, DAP, as well as patient height and weight were recorded. Two radiologists evaluated the image quality of 26 hip axiolateral projection images on a 3-point nondiagnostic - good/sufficiently good - too good scale. Source-to-image distance of 200 cm and peak tube voltage of 90 kVp were used in both studies. RESULTS AND CONCLUSION: Based on the phantom study, it is possible to reduce radiation dose by replacing conventional grid with air gap without compromising image quality. The optimal air gap distance appears to be 30 cm, based on the FOM analysis. Patient study corroborates this observation, as sufficiently good image quality was found in 24 of 26 patient radiographs, with 7 of 26 images obtained with 30 cm air gap. Thus, air gap method, with an air gap distance of 30 cm, is recommended in axiolateral hip radiography.


Subject(s)
Radiographic Image Enhancement , Humans , Phantoms, Imaging , Radiation Dosage , Radiography
7.
Archaeol Anthropol Sci ; 12(8): 169, 2020.
Article in English | MEDLINE | ID: mdl-32704330

ABSTRACT

Reindeer herding probably developed during the Late Iron Age onwards and is still an important part of the subsistence and culture of many peoples in northern Eurasia. However, despite the importance of this husbandry in the history of these Arctic people, the period and place of the origin as well as the spread of domestic reindeer is still highly debated. Besides the existence of different breeding methods in these territories, identifying domesticated individuals in the archaeological record is complicated because reindeers are considered to still be in the early phases of the domestication process. Indeed, the traditional morphological markers used in zooarchaeology to decipher the domestication syndrome are hardly perceptible in these early stages. In this work, we propose solutions for identifying domestic reindeer bones using 3D geometric morphometrics on isolated elements from the long bones of the forelimb (i.e. humerus, radio-ulna and metacarpal). These bones are important to understand both the feeding behaviour and the mobility of reindeer, and the potential effect of load-carrying or draught in the case of domestic reindeer. We analysed 123 modern specimens from Fennoscandia, including the two interbreeding subspecies currently present in these territories: mountain reindeer (Rangifer tarandus tarandus) and forest reindeer (R.t. fennicus); and where the sex and the lifestyle were known (i.e. free-ranging, racing or draught and captive individuals). A good level of discrimination between the size and shape variables of the bones of the forelimb was found among both subspecies and sexes. Moreover, individuals bred in captivity had smaller bone elements and a thinner and more slender morphology than free-ranging individuals. This demonstrates that the long bones of the forelimb can provide information on changes in feeding and locomotor behaviour prompted by the domestication process, like control and/or reduction of mobility and food of individual reindeer by humans. This also demonstrates that analysis in 3D geometric morphometrics is useful in detecting reindeer incipient domestication markers. Our results can be used by archaeologists to trace the early stages of domestication from fossil reindeer remains, and aid in reconstructing the socio-economic changes of past Arctic populations over time.

8.
Biomed Phys Eng Express ; 6(5): 055011, 2020 07 20.
Article in English | MEDLINE | ID: mdl-33444242

ABSTRACT

Computed tomography (CT) is the reference method for cardiac imaging, but concerns have been raised regarding the radiation dose of CT examinations. Recently, photon counting detectors (PCDs) and interior tomography, in which the radiation beam is limited to the organ-of-interest, have been suggested for patient dose reduction. In this study, we investigated interior PCD-CT (iPCD-CT) for non-enhanced quantification of coronary artery calcium (CAC) using an anthropomorphic torso phantom and ex vivo coronary artery samples. We reconstructed the iPCD-CT measurements with filtered back projection (FBP), iterative total variation (TV) regularization, padded FBP, and adaptively detruncated FBP and adaptively detruncated TV. We compared the organ doses between conventional CT and iPCD-CT geometries, assessed the truncation and cupping artifacts with iPCD-CT, and evaluated the CAC quantification performance of iPCD-CT. With approximately the same effective dose between conventional CT geometry (0.30 mSv) and interior PCD-CT with 10.2 cm field-of-view (0.27 mSv), the organ dose of the heart was increased by 52.3% with interior PCD-CT when compared to CT. Conversely, the organ doses to peripheral and radiosensitive organs, such as the stomach (55.0% reduction), were often reduced with interior PCD-CT. FBP and TV did not sufficiently reduce the truncation artifact, whereas padded FBP and adaptively detruncated FBP and TV yielded satisfactory truncation artifact reduction. Notably, the adaptive detruncation algorithm reduced truncation artifacts effectively when it was combined with reconstruction detrending. With this approach, the CAC quantification accuracy was good, and the coronary artery disease grade reclassification rate was particularly low (5.6%). Thus, our results confirm that CAC quantification can be performed with the interior CT geometry, that the artifacts are effectively reduced with suitable interior reconstruction methods, and that interior tomography provides efficient patient dose reduction.


Subject(s)
Calcium/metabolism , Coronary Artery Disease/physiopathology , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Photons , Tomography, X-Ray Computed/methods , Vascular Calcification/pathology , Adult , Algorithms , Coronary Artery Disease/diagnostic imaging , Heart/diagnostic imaging , Heart/radiation effects , Humans , Male , Radiation Dosage , Vascular Calcification/diagnostic imaging , Vascular Calcification/metabolism
9.
IEEE Trans Med Imaging ; 39(1): 35-47, 2020 01.
Article in English | MEDLINE | ID: mdl-31144630

ABSTRACT

In this paper, the accuracy of material decomposition (MD) using an energy discriminating photon counting detector was studied. An MD framework was established and validated using calcium hydroxyapatite (CaHA) inserts of known densities (50 mg/cm3, 100 mg/cm3, 250 mg/cm3, 400 mg/cm3), and diameters (1.2, 3.0, and 5.0 mm). These inserts were placed in a cardiac rod phantom that mimics a tissue equivalent heart and measured using an experimental photon counting detector cone beam computed tomography (PCD-CBCT) setup. The quantitative coronary calcium scores (density, mass, and volume) obtained from the MD framework were compared with the nominal values. In addition, three different calibration techniques, signal-to-equivalent thickness calibration (STC), polynomial correction (PC), and projected equivalent thickness calibration (PETC) were compared to investigate the effect of the calibration method on the quantitative values. The obtained MD estimates agreed well with the nominal values for density (mass) with mean absolute percent errors (MAPEs) 8 ± 11% (9 ± 15%) and 4 ± 6% (9 ± 14%) for STC and PETC calibration methods, respectively. PC displayed large MAPEs for density (27 ± 9%), and mass (25 ± 12%). Volume estimation resulted in large deviations between true and measured values with notable MAPEs for STC (40 ± 90%), PC (40 ± 80%), and PETC (40 ± 90%). The framework demonstrated the feasibility of quantitative CaHA mass and density scoring using PCD-CBCT.


Subject(s)
Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Models, Cardiovascular , Phantoms, Imaging , Algorithms , Cadmium Compounds/chemistry , Calibration , Durapatite/chemistry , Humans , Photons , Tellurium/chemistry
10.
Dentomaxillofac Radiol ; 48(2): 20170471, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30084258

ABSTRACT

OBJECTIVES:: The aim was to compare titanium and glass fibre-reinforced composite (FRC) orbital floor implants using cone beam CT (CBCT). FRC implants are nonmetallic and these implants have not been analysed in CBCT images before. The purpose of this study is to compare the artefact formation of the titanium and the FRC orbital floor implants in CBCT images. METHODS:: One commercially pure titanium and one S-glass FRC with bioactive glass particles implant were imaged with CBCT using the same imaging values (80 kV, 1 mA, FOV 60 × 60 mm). CBCT images were analysed in axial slices from three areas to determine the magnitude of the artefacts in the vicinity of the implants. Quantified results based on the gray values of images were analysed using analysis-of-variance. RESULTS:: Compared to the reference the gray values of the titanium implant are more negative in every region of interest in all slices (p < 0.05) whereas the gray values of the FRC implant differ statistically significantly in less than half of the examined areas. CONCLUSIONS:: The titanium implant caused artefacts in all of the analysed CBCT slices. Compared to the reference the gray values of the FRC implant changed only slightly and this feature enables to use wider imaging options postoperatively.


Subject(s)
Cone-Beam Computed Tomography , Dental Implants , Titanium , Artifacts , Glass , Humans , Silicon Dioxide
11.
Radiat Prot Dosimetry ; 185(1): 42-48, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-30544171

ABSTRACT

The aim of the study was to compare the absorbed doses and image quality of organ-based tube current modulation (OBTCM) and bismuth shielding of breasts and thyroid against regular tube current modulation in chest CT scan. An anthropomorphic phantom and MOSFET dosemeters were used to evaluate absorbed doses. Image quality was assessed from HU and noise. Relative to the reference scan, the average absorbed dose reduction with OBTCM was 5.2% and with bismuth shields 24.2%. Difference in HU values compared to the reference varied between -4.1 and 4.2 HU in OBTCM scan and between -22.2 and 118.6 HU with bismuth shields. Image noise levels varied between 10.0 to 26.3 HU in the reference scan, from 9.6 to 27.7 HU for the OBTCM scan and from 11.9 to 43.9 HU in the bismuth scan. The use of bismuth shields provided greatest dose reduction compared to the investigated OBTCM.


Subject(s)
Bismuth/chemistry , Image Processing, Computer-Assisted/methods , Phantoms, Imaging , Radiation Protection/instrumentation , Radiography, Thoracic/standards , Tomography, X-Ray Computed/standards , Breast/radiation effects , Female , Humans , Organ Specificity , Protective Devices , Radiation Dosage , Radiometry/methods , Thorax/radiation effects , Thyroid Gland/radiation effects , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...