Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
2.
Environ Manage ; 68(2): 170-183, 2021 08.
Article in English | MEDLINE | ID: mdl-34100133

ABSTRACT

The rates of ecosystem degradation and biodiversity loss are alarming and current conservation efforts are not sufficient to stop them. The need for new tools is urgent. One approach is biodiversity offsetting: a developer causing habitat degradation provides an improvement in biodiversity so that the lost ecological value is compensated for. Accurate and ecologically meaningful measurement of losses and estimation of gains are essential in reaching the no net loss goal or any other desired outcome of biodiversity offsetting. The chosen calculation method strongly influences biodiversity outcomes. We compare a multiplicative method, which is based on a habitat condition index developed for measuring the state of ecosystems in Finland to two alternative approaches for building a calculation method: an additive function and a simpler matrix tool. We examine the different logic of each method by comparing the resulting trade ratios and examine the costs of offsetting for developers, which allows us to compare the cost-effectiveness of different types of offsets. The results show that the outcomes of the calculation methods differ in many aspects. The matrix approach is not able to consider small changes in the ecological state. The additive method gives always higher biodiversity values compared to the multiplicative method. The multiplicative method tends to require larger trade ratios than the additive method when trade ratios are larger than one. Using scoring intervals instead of using continuous components may increase the difference between the methods. In addition, the calculation methods have differences in dealing with the issue of substitutability.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Finland , Motivation
3.
Conserv Biol ; 35(1): 197-205, 2021 02.
Article in English | MEDLINE | ID: mdl-32390216

ABSTRACT

Biodiversity offsetting is the practice of using conservation actions, such as habitat restoration, management, or protection, to compensate for ecological losses caused by development activity, including construction projects. The typical goal of offsetting is no net loss (NNL), which means that all ecological losses are compensated for by commensurate offset gains. We focused on a conceptual and methodological exploration of net positive impact (NPI), an ambitious goal that implies commitment beyond NNL and that has recently received increasing attention from big business and environmental nongovernmental organizations. We identified 3 main ways NPI could be delivered: use of an additional NPI multiplier; use of slowly developing permanent offsets to deliver additional gains after NNL has first been reached during a shorter offset evaluation time interval; and the combination of permanent offsets with partially temporary losses. An important and novel variant of the last mechanism is the use of an alternate mitigation hierarchy so that gains from the traditional third step of the mitigation hierarchy (i.e., onsite rehabilitation) are no longer be counted toward reduced offset requirements. The outcome from these 3 factors is that for the same ecological damage, larger offsets will be required than previously, thereby improving offset success. As a corollary, we show that offsets are NNL only at 1 ephemeral point in time, before which they are net negative and after which they become either NPI or net negative impact, depending on whether permanent offsets are combined with partially temporary losses or if temporary offset gains are combined with partially permanent losses. To achieve NPI, offsets must be made permanent, and they must achieve NNL during an agreed-upon offset evaluation period. An additional NPI-multiplier and use of the modified mitigation hierarchy will deliver additional NPI gains. Achieving NPI is fully conditional on prior achievement of NNL, and NNL offsets have been frequently observed to fail due to inadequate policy requirements, poor planning, or incomplete implementation. Nevertheless, achieving NPI becomes straightforward if NNL can be credibly reached first.


Tres Maneras de Proporcionar un Impacto Positivo Neto con Compensaciones por Biodiversidad Resumen La compensación por biodiversidad es una práctica que consiste en usar las acciones de conservación, como la restauración, manejo o protección del hábitat, para compensar las pérdidas ecológicas causadas por las actividades de desarrollo, incluidos los proyectos de construcción. La meta típica de la compensación es la nula pérdida neta (NNL), lo que implica que todas las pérdidas ecológicas están compensadas por las ganancias proporcionales. Nos enfocamos en una exploración conceptual y metodológica del impacto positivo neto (NPI), una meta ambiciosa que implica un compromiso más allá de la NNL y que recientemente ha recibido una mayor atención por parte de los grandes negocios y las organizaciones no gubernamentales ambientales. Identificamos tres maneras principales mediante las cuales se podría proporcionar el NPI: el uso de un multiplicador adicional de NPI; el uso de compensaciones permanentes de lento desarrollo para entregar ganancias adicionales después de que primero se haya logrado el NNL durante un intervalo de tiempo más corto para la evaluación de las compensaciones; y la combinación de las compensaciones permanentes con las pérdidas parcialmente temporales. Una variante importante y novedosa del último mecanismo es el uso de una jerarquía alterna de mitigación de tal manera que las ganancias provenientes del tradicional tercer paso de la jerarquía de mitigación (es decir, la rehabilitación in situ) ya no se contabilizan para los requerimientos reducidos de las compensaciones. El resultado de estos tres factores consiste en que para el mismo daño ecológico se requerirán compensaciones mayores a las necesarias previamente, aumentando así el éxito de las compensaciones. Como corolario, demostramos que las compensaciones sólo alcanzan el NNl durante un punto efímero en el tiempo, antes del cual tienen un saldo neto negativo y después del cual se transforman en un impacto neto positivo o un impacto neto negativo dependiendo de si las compensaciones permanentes se combinan con pérdidas parcialmente temporales o de si las ganancias temporales de las compensaciones se combinan con pérdidas parcialmente temporales. Para alcanzar el NPI, las compensaciones deben volverse permanentes y deben llegar al NNL durante un periodo acordado de evaluación de compensaciones. El uso de un multiplicador adicional de NPI y de una jerarquía alterada de mitigación proporcionará ganancias adicionales al NPI. La obtención del NPI es completamente dependiente de la obtención previa del NNL; se ha observado con frecuencia que las compensaciones por NNL fallan debido a los requerimientos inadecuados de las políticas, la pobre planeación o la implementación incompleta. Sin embargo, llegar al NPI se vuelve una tarea sencilla si primero se puede alcanzar el NNL de manera verosímil.


Subject(s)
Biodiversity , Conservation of Natural Resources , Commerce , Ecosystem , Motivation
4.
Nat Commun ; 11(1): 6377, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311448

ABSTRACT

Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.


Subject(s)
Research Design , Social Sciences , Bias , Biodiversity , Ecology , Environment , Humans , Literature , Prevalence
6.
Conserv Biol ; 32(1): 9-17, 2018 02.
Article in English | MEDLINE | ID: mdl-29139572

ABSTRACT

The frequently discussed gap between conservation science and practice is manifest in the gap between spatial conservation prioritization plans and their implementation. We analyzed the research-implementation gap of one zoning case by comparing results of a spatial prioritization analysis aimed at avoiding ecological impact of peat mining in a regional zoning process with the final zoning plan. We examined the relatively complex planning process to determine the gaps among research, zoning, and decision making. We quantified the ecological costs of the differing trade-offs between ecological and socioeconomic factors included in the different zoning suggestions by comparing the landscape-level loss of ecological features (species occurrences, habitat area, etc.) between the different solutions for spatial allocation of peat mining. We also discussed with the scientists and planners the reasons for differing zoning suggestions. The implemented plan differed from the scientists suggestion in that its focus was individual ecological features rather than all the ecological features for which there were data; planners and decision makers considered effects of peat mining on areas not included in the prioritization analysis; zoning was not truly seen as a resource-allocation process and not emphasized in general minimizing ecological losses while satisfying economic needs (peat-mining potential); and decision makers based their prioritization of sites on site-level information showing high ecological value and on single legislative factors instead of finding a cost-effective landscape-level solution. We believe that if the zoning and decision-making processes are very complex, then the usefulness of science-based prioritization tools is likely to be reduced. Nevertheless, we found that high-end tools were useful in clearly exposing trade-offs between conservation and resource utilization.


Subject(s)
Conservation of Natural Resources , Ecology , Decision Making , Ecosystem , Soil
8.
Ecol Evol ; 7(19): 7848-7858, 2017 10.
Article in English | MEDLINE | ID: mdl-29043039

ABSTRACT

Ecological restoration is expected to reverse the loss of biodiversity and ecosystem services. Due to the low number of well-replicated field studies, the extent to which restoration recovers plant communities, and the factors underlying possible shortcomings, are not well understood even in medium term. We compared the plant community composition of 38 sites comprising pristine, forestry-drained, and 5 or 10 years ago restored peatlands in southern Finland, with special interest in understanding spatial variation within studied sites, as well as the development of the numbers and the abundances of target species. Our results indicated a recovery of community composition 5-10 years after restoration, but there was significant heterogeneity in recovery. Plant communities farthest away from ditches were very similar to their pristine reference already 10 years after restoration. In contrast, communities in the ditches were as far from the target as the drained communities. The recovery appears to be characterized by a decline in the number and abundance of species typical to degraded conditions, and increase in the abundance of characteristic peatland species. However, we found no increase above the drained state in the number of characteristic peatland species. Our results suggest that there is a risk of drawing premature conclusions on the efficiency of ecological restoration with the current practice of short-term monitoring. Our results also illustrate fine-scale within-site spatial variability in the degradation and recovery of the plant communities that should be considered when evaluating the success of restoration. Overall, we find the heterogeneous outcome of restoration observed here promising. However, low recovery in the number of characteristic species demonstrates the importance of prioritizing restoration sites, and addressing the uncertainty of recovery when setting restoration targets. It appears that it is easier to eradicate unwanted species than regain characteristic species by restoration.

9.
J Environ Manage ; 180: 366-74, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27262031

ABSTRACT

Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future.


Subject(s)
Conservation of Natural Resources/economics , Conservation of Natural Resources/methods , Forestry/methods , Resource Allocation/economics , Taiga , Ecology , Finland , Models, Theoretical , Trees
11.
Sci Total Environ ; 537: 268-76, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26282761

ABSTRACT

Degradation of ecosystems is a great concern on the maintenance of biodiversity and ecosystem services. Ecological restoration fights degradation aiming at the recovery of ecosystem functions such as carbon (C) sequestration and ecosystem structures like plant communities responsible for the C sequestration function. We selected 38 pristine, drained and restored boreal peatland sites in Finland and asked i) what is the long-term effect of drainage on the peatland surface layer C storage, ii) can restoration recover ecosystem functioning (surface layer growth) and structure (plant community composition) and iii) is the recovery of the original structure needed for the recovery of ecosystem functions? We found that drainage had resulted in a substantial net loss of C from surface layer of drained sites. Restoration was successful in regaining natural growth rate in the peatland surface layer already within 5 years after restoration. However, the regenerated surface layer sequestered C at a mean rate of 116.3 g m(-2) yr(-1) (SE 12.7), when a comparable short-term rate was 178.2 g m(-2) yr(-1) (SE 13.3) at the pristine sites. The plant community compositions of the restored sites were considerably dissimilar to those of pristine sites still 10 years after restoration. We conclude that ecological restoration can be used to jump-start some key peatland ecosystem functions even without the recovery of original ecosystem structure (plant community composition). However, the re-establishment of other functions like C sequestration may require more profound recovery of conditions and ecosystem structure. We discuss the potential economic value of restored peatland ecosystems from the perspective of their C sequestration function.


Subject(s)
Carbon Sequestration , Environmental Restoration and Remediation/methods , Biodiversity , Carbon/analysis , Conservation of Natural Resources/methods , Ecosystem , Finland , Wetlands
12.
BMC Ecol ; 15: 11, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25888218

ABSTRACT

BACKGROUND: Restoration aims at reversing the trend of habitat degradation, the major threat to biodiversity. In Finland, more than half of the original peatland area has been drained, and during recent years, restoration of some of the drained peatlands has been accomplished. Short-term effects of the restoration on peatland hydrology, chemistry and vegetation are promising but little is known about how other species groups apart from vascular plants and bryophytes respond to restoration efforts. RESULTS: Here, we studied how abundance and species richness of Odonata (dragonflies and damselflies) respond to restoration. We sampled larvae in three sites (restored, drained, pristine) on each of 12 different study areas. We sampled Odonata larvae before restoration (n = 12), during the first (n = 10) and the third (n = 7) year after restoration and used generalized linear mixed models to analyze the effect of restoration. Drained sites had lower abundance and species richness than pristine sites. During the third year after restoration both abundance and species richness had risen in restored sites. CONCLUSIONS: Our results show that Odonata suffer from drainage, but seem to benefit from peatland restoration and are able to colonize newly formed water pools already within three years after restoration.


Subject(s)
Biodiversity , Conservation of Natural Resources , Environmental Restoration and Remediation , Odonata/physiology , Animals , Finland , Larva , Linear Models , Wetlands
14.
Mol Ecol ; 23(20): 4976-88, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25211376

ABSTRACT

Spatial genetic structure (SGS) is largely determined by colonization history, landscape and ecological characteristics of the species. Therefore, sympatric and ecologically similar species are expected to exhibit similar SGSs, potentially enabling prediction of the SGS of one species from that of another. On the other hand, due to interspecific interactions, ecologically similar species could have different SGSs. We explored the SGSs of the closely related Calopteryx splendens and Calopteryx virgo within Finland and related the genetic patterns to characteristics of the sampling localities. We observed different SGSs for the two species. Genetic differentiation even within short distances in C. splendens suggests genetic drift as an important driver. However, we also observed indication of previous gene flow (revealed by a negative relationship between genetic differentiation and increasing potential connectivity of the landscape). Interestingly, genetic diversity of C. splendens was negatively related to density of C. virgo, suggesting that interspecific interactions influence the SGS of C. splendens. In contrast, genetic differentiation between C. virgo subpopulations was low and only exhibited relationships with latitude, pointing to high gene flow, colonization history and range margin effects as the drivers of SGS. The different SGSs of the two ecologically similar species caution indirect inferences of SGS based on ecologically similar surrogate species.


Subject(s)
Gene Flow , Genetic Drift , Genetic Variation , Insecta/genetics , Animals , Bayes Theorem , Cluster Analysis , Finland , Genetics, Population , Geography , Insecta/classification , Sequence Analysis, DNA , Species Specificity , Sympatry
15.
PLoS One ; 9(4): e93786, 2014.
Article in English | MEDLINE | ID: mdl-24710329

ABSTRACT

Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer 'lifeboats' to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L.) retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 'retention aspens' on 14 differently aged retention sites with 102 'conservation aspens' on 14 differently aged conservation sites. We used a Bayesian community-level modelling approach to estimate the changes in bryophyte species richness, abundance (area covered) and community structure during 30 years after logging. Using the fitted model, we estimated that two years after logging both species richness and abundance of bryophytes declined, but during the following 20-30 years both recovered to the level of conservation aspens. However, logging-induced changes in bryophyte community structure did not fully recover over the same time period. Liverwort species showed some or low potential to benefit from lifeboating and high potential to re-colonise as time since logging increases. Most moss species responded similarly, but two cushion-forming mosses benefited from the logging disturbance while several weft- or mat-forming mosses declined and did not re-colonise in 20-30 years. We conclude that retention trees do not function as equally effective lifeboats for all bryophyte species but are successful in providing suitable habitats for many species in the long-term. To be most effective, retention cuts should be located adjacent to conservation sites, which may function as sources of re-colonisation and support the populations of species that require old-growth forests.


Subject(s)
Bryophyta , Conservation of Natural Resources/methods , Forestry/methods , Trees , Bayes Theorem , Biodiversity
16.
Evol Appl ; 7(9): 1107-19, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25553071

ABSTRACT

Understanding the effects of inbreeding and genetic drift within populations and hybridization between genetically differentiated populations is important for many basic and applied questions in ecology and evolutionary biology. The magnitudes and even the directions of these effects can be influenced by various factors, especially by the current and historical population size (i.e. inbreeding rate). Using Drosophila littoralis as a model species, we studied the effect of inbreeding rate over a range of inbreeding levels on (i) mean fitness of a population (relative to that of an outbred control population), (ii) within-population inbreeding depression (reduction in fitness of offspring from inbred versus random mating within a population) and (iii) heterosis (increase in fitness of offspring from interpopulation versus within-population random mating). Inbreeding rate was manipulated by using three population sizes (2, 10 and 40), and fitness was measured as offspring survival and fecundity. Fast inbreeding (smaller effective population size) resulted in greater reduction in population mean fitness than slow inbreeding, when populations were compared over similar inbreeding coefficients. Correspondingly, populations with faster inbreeding expressed more heterosis upon interpopulation hybridization. Inbreeding depression within the populations did not have a clear relationship with either the rate or the level of inbreeding.

17.
Conserv Biol ; 27(6): 1294-303, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24033397

ABSTRACT

Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on-the-ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land-use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land-use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape-level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land-use zoning in the province of Central Finland.


Subject(s)
Biodiversity , Conservation of Natural Resources/methods , Soil , Ecosystem , Endangered Species , Finland
18.
BMC Ecol ; 13: 24, 2013 Jul 10.
Article in English | MEDLINE | ID: mdl-23842291

ABSTRACT

BACKGROUND: Conservation of biological diversity and economical utilization of natural resources form an almost inevitable confrontation between the two. In practice, however, a balance between the two ought to be found, and in managed boreal forests, preservation of woodland key habitats is increasingly used strategy to safeguard biological diversity. According to the Finnish Forests Act, certain Forest Act habitat (FAH) types must be safeguarded, provided they are clearly distinguishable from their surroundings. Furthermore, once the habitat has been identified as a FAH, its special characteristics must not be altered. Both of these aspects contain ambiguities that potentially undermine the practical application of the Act. We designed a replicated sampling study to address these ambiguities at the most common FAH type, riparian habitat of small boreal streams. As response variables we used vascular plants and mosses. We asked i) how wide is the FAH around small streams that is distinguishable from its surrounding and ii) how wide buffer strip around the FAH is sufficient for long term to preserve the natural species community composition of the FAH. RESULTS: We found that an average three meters wide strip around the stream constitutes the distinguishable FAH and that a minimum of 45 meters wide buffers on both sides of the stream are needed for the species community composition to remain unaltered. CONCLUSIONS: We conclude that 45 meters wide buffers appear sufficient to safeguard vascular plant and moss species communities within the FAH, prevent local populations from extinctions and thus pre-empt extinction debt that would be realised with more narrow buffers. While 45 meters may seem intolerable from the commercial forestry point of view, anything less than that may be intolerable from the point of view of conservation, and thus against the idea of sustainable use of natural resources.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Forestry/methods , Trees/growth & development , Extinction, Biological
19.
Ecol Evol ; 2(8): 1791-804, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22957182

ABSTRACT

The negative fitness consequences of close inbreeding are widely recognized, but predicting the long-term effects of inbreeding and genetic drift due to limited population size is not straightforward. As the frequency and homozygosity of recessive deleterious alleles increase, selection can remove (purge) them from a population, reducing the genetic load. At the same time, small population size relaxes selection against mildly harmful mutations, which may lead to accumulation of genetic load. The efficiency of purging and the accumulation of mutations both depend on the rate of inbreeding (i.e., population size) and on the nature of mutations. We studied how increasing levels of inbreeding affect offspring production and extinction in experimental Drosophila littoralis populations replicated in two sizes, N = 10 and N = 40. Offspring production and extinction were measured over 25 generations concurrently with a large control population. In the N = 10 populations, offspring production decreased strongly at low levels of inbreeding, then recovered only to show a consistent subsequent decline, suggesting early expression and purging of recessive highly deleterious alleles and subsequent accumulation of mildly harmful mutations. In the N = 40 populations, offspring production declined only after inbreeding reached higher levels, suggesting that inbreeding and genetic drift pose a smaller threat to population fitness when inbreeding is slow. Our results suggest that highly deleterious alleles can be purged in small populations already at low levels of inbreeding, but that purging does not protect the small populations from eventual genetic deterioration and extinction.

20.
Evolution ; 66(8): 2341-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22834736

ABSTRACT

In 1992, David Houle showed that measures of additive genetic variation standardized by the trait mean, CVA (the coefficient of additive genetic variation) and its square (IA), are suitable measures of evolvability. CVA has been used widely to compare patterns of genetic variation. However, the use of CVAs for comparative purposes relies critically on the correct calculation of this parameter. We reviewed a sample of quantitative genetic studies, focusing on sire models, and found that 45% of studies use incorrect methods for calculating CVA and that practices that render these coefficients meaningless are frequent. This may have important consequences for conclusions drawn from comparative studies. Our results are suggestive of a broader problem because miscalculation of the additive genetic variance from a sire model is prevalent among the studies sampled, implying that other important quantitative genetic parameters might also often be estimated incorrectly. We discuss the most prominent issues affecting the use of CVA and IA, including scale effects, data transformation, and the comparison of traits with different dimensions. Our aim is to increase awareness of the potential mistakes surrounding the calculation and use of evolvabilities, and to compile general guidelines for calculating, reporting, and interpreting these useful measures in future studies.


Subject(s)
Data Interpretation, Statistical , Genetic Variation , Models, Genetic , Quantitative Trait, Heritable , Animals , Biological Evolution , Invertebrates/genetics , Plants/genetics , Selection, Genetic , Vertebrates/genetics
SELECTION OF CITATIONS
SEARCH DETAIL