Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 326: 121795, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37230376

ABSTRACT

AIMS: Phytoestrogens can act as natural estrogens owing to their structural similarity to human estrogens. Biochanin-A (BCA) is a well-studied phytoestrogen with a wide variety of pharmacological activities, whereas not reported in the most frequently encountered endocrinopathy called polycystic ovary syndrome (PCOS) in women. PURPOSE: This study aimed to investigate the therapeutic effect of BCA on dehydroepiandrosterone (DHEA) induced PCOS in mice. MAIN METHODS: Thirty-six female C57BL6/J mice were divided into six groups: sesame oil, DHEA-induced PCOS, DHEA + BCA (10 mg/kg/day), DHEA + BCA (20 mg/kg/day), DHEA + BCA (40 mg/kg/day), and metformin (50 mg/kg/day). KEY FINDINGS: The results showed a decrease in obesity, elevated lipid parameters, restoration of hormonal imbalances (testosterone, progesterone, estradiol, adiponectin, insulin, luteinizing hormone, and follicle-stimulating hormone), estrus irregular cyclicity, and pathological changes in the ovary, fat pad, and liver. SIGNIFICANCE: In conclusion, BCA supplementation inhibited the over secretion of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) and upregulated TGFß superfamily markers such as GDF9, BMP15, TGFßR1, and BMPR2 in the ovarian milieu of PCOS mice. Furthermore, BCA reversed insulin resistance by increasing circulating adiponectin levels through a negative correlation with insulin levels. Our results indicate that BCA attenuated DHEA-induced PCOS ovarian derangements, which could be mediated by the TGFß superfamily signaling pathway via GDF9 and BMP15 and associated receptors as first evidenced in this study.


Subject(s)
Polycystic Ovary Syndrome , Animals , Female , Mice , Adiponectin/metabolism , Bone Morphogenetic Protein 15/genetics , Bone Morphogenetic Protein 15/metabolism , Dehydroepiandrosterone/therapeutic use , Estrogens/therapeutic use , Growth Differentiation Factor 9/genetics , Growth Differentiation Factor 9/metabolism , Insulin/metabolism , Polycystic Ovary Syndrome/chemically induced , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Up-Regulation
2.
Inflammation ; 46(3): 787-807, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36622573

ABSTRACT

Ulcerative colitis (UC) is an intestinal inflammatory disease characterised by the loss of intestinal crypts, edema, mucosal ulceration, and infiltration of inflammatory cells in the mucosa. The current study aimed to investigate the protective and therapeutic effects of sinigrin and underlying mechanisms in a dextran sulfate sodium (DSS)-induced mouse model of ulcerative colitis. DSS-induced colitis models were used to demonstrate sinigrin's therapeutic/protective action. Mice were orally administered with sinigrin (15 mg/kg or 30 mg/kg) for a period of 12 days in both prophylactic and therapeutic models. Animal weights, stool consistency, and bleeding parameters were measured throughout the experimental period. After the experimental period, colon lengths were measured, and colon tissues were harvested to determine the levels of oxidative stress-inducing factors (nitrates and MDA levels) and anti-oxidant components (GSH, SOD, and catalase). Furthermore, gene expression analysis, IL-17 levels, and inflammatory marker expressions were measured using RT-qPCR, ELISA, and immunohistochemical methods respectively. Furthermore, histopathological observations and elucidation of the mechanism of action were determined using H&E analysis and Western blot analysis. Sinigrin treatment (in both prophylactic and therapeutic models) significantly mitigated the DSS-induced body weight loss, attenuated the colon length shrinkage, and improved the disease index score (p < 0.001). Further results revealed that sinigrin's protective/therapeutic effect is associated with a significant attenuation of pro­inflammatory cytokine production (p < 0.001), reversing the anti-oxidant enzyme levels (p < 0.001) and substantial improvement (2 folds) of the disruption of the colonic morphology in colon tissues compared to DSS control. Immunohistochemical analysis showed that sinigrin treatment remarkably reduced the DSS-induced myeloperoxidase, neutrophil elastase, and CD68 expression in colon tissues. Additionally, sinigrin successfully abrogated the DSS-induced IL-17 levels (p < 0.001) and improved the colonic barrier in colon tissues. Overall, these results demonstrated that sinigrin exerts protective and therapeutic effects on DSS­induced colitis, by enhancing the anti-oxidant enzymes and suppressing the intestinal inflammatory cascade of markers by regulating the MAPK pathway.


Subject(s)
Colitis, Ulcerative , Colitis , Animals , Mice , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Dextran Sulfate/toxicity , Interleukin-17 , Antioxidants/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Disease Models, Animal , Mice, Inbred C57BL
3.
Phytomedicine ; 92: 153729, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34517257

ABSTRACT

BACKGROUND: Inflammation-mediated lung injury is a major cause of health problems in many countries and has been the leading cause of morbidity/mortality in intensive care units. In the current COVID-19 pandemic, the majority of the patients experienced serious pneumonia resulting from inflammation (Acute respiratory distress syndrome/ARDS). Pathogenic infections cause cytokine release syndrome (CRS) by hyperactivation of immune cells, which in turn release excessive cytokines causing ARDS. Currently, there are no standard therapies for viral, bacterial or pathogen-mediated CRS. PURPOSE: This study aimed to investigate and validate the protective effects of Dehydrozingerone (DHZ) against LPS induced lung cell injury by in-vitro and in-vivo models and to gain insights into the molecular mechanisms that mediate these therapeutic effects. METHODS: The therapeutic activity of DHZ was determined in in-vitro models by pre-treating the cells with DHZ and exposed to LPS to stimulate the inflammatory cascade of events. We analysed the effect of DHZ on LPS induced inflammatory cytokines, chemokines and cell damage markers expression/levels using various cell lines. We performed gene expression, ELISA, and western blot analysis to elucidate the effect of DHZ on inflammation and its modulation of MAPK and NF-κB pathways. Further, the prophylactic and therapeutic effect of DHZ was evaluated against the LPS induced ARDS model in rats. RESULTS: DHZ significantly (p < 0.01) attenuated the LPS induced ROS, inflammatory cytokine, chemokine gene expression and protein release in macrophages. Similarly, DHZ treatment protected the lung epithelial and endothelial cells by mitigating the LPS induced inflammatory events in a dose-dependent manner. In vivo analysis showed that DHZ treatment significantly (p < 0.001) mitigated the LPS induced ARDS pathophysiology of increase in the inflammatory cells in BALF, inflammatory cytokine and chemokines in lung tissues. LPS stimulated neutrophil-mediated events, apoptosis, alveolar wall thickening and alveolar inflammation were profoundly reduced by DHZ treatment in a rat model. CONCLUSION: This study demonstrates for the first time that DHZ has the potential to ameliorate LPS induced ARDS by inhibiting cytokine storm and oxidative through modulating the MAPK and NF-κB pathways. This data provides pre-clinical support to develop DHZ as a potential therapeutic agent against ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Animals , Cytokine Release Syndrome , Endothelial Cells/metabolism , Humans , Lipopolysaccharides , Lung/metabolism , NF-kappa B/metabolism , Oxidative Stress , Pandemics , Rats , Respiratory Distress Syndrome/drug therapy , SARS-CoV-2 , Styrenes
SELECTION OF CITATIONS
SEARCH DETAIL
...