Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36298367

ABSTRACT

Background: Digital clinical measures collected via various digital sensing technologies such as smartphones, smartwatches, wearables, and ingestible and implantable sensors are increasingly used by individuals and clinicians to capture the health outcomes or behavioral and physiological characteristics of individuals. Time series classification (TSC) is very commonly used for modeling digital clinical measures. While deep learning models for TSC are very common and powerful, there exist some fundamental challenges. This review presents the non-deep learning models that are commonly used for time series classification in biomedical applications that can achieve high performance. Objective: We performed a systematic review to characterize the techniques that are used in time series classification of digital clinical measures throughout all the stages of data processing and model building. Methods: We conducted a literature search on PubMed, as well as the Institute of Electrical and Electronics Engineers (IEEE), Web of Science, and SCOPUS databases using a range of search terms to retrieve peer-reviewed articles that report on the academic research about digital clinical measures from a five-year period between June 2016 and June 2021. We identified and categorized the research studies based on the types of classification algorithms and sensor input types. Results: We found 452 papers in total from four different databases: PubMed, IEEE, Web of Science Database, and SCOPUS. After removing duplicates and irrelevant papers, 135 articles remained for detailed review and data extraction. Among these, engineered features using time series methods that were subsequently fed into widely used machine learning classifiers were the most commonly used technique, and also most frequently achieved the best performance metrics (77 out of 135 articles). Statistical modeling (24 out of 135 articles) algorithms were the second most common and also the second-best classification technique. Conclusions: In this review paper, summaries of the time series classification models and interpretation methods for biomedical applications are summarized and categorized. While high time series classification performance has been achieved in digital clinical, physiological, or biomedical measures, no standard benchmark datasets, modeling methods, or reporting methodology exist. There is no single widely used method for time series model development or feature interpretation, however many different methods have proven successful.


Subject(s)
Algorithms , Machine Learning , Humans , Smartphone , Time Factors
2.
J Med Internet Res ; 23(9): e29875, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34524089

ABSTRACT

BACKGROUND: Digital clinical measures collected via various digital sensing technologies such as smartphones, smartwatches, wearables, ingestibles, and implantables are increasingly used by individuals and clinicians to capture health outcomes or behavioral and physiological characteristics of individuals. Although academia is taking an active role in evaluating digital sensing products, academic contributions to advancing the safe, effective, ethical, and equitable use of digital clinical measures are poorly characterized. OBJECTIVE: We performed a systematic review to characterize the nature of academic research on digital clinical measures and to compare and contrast the types of sensors used and the sources of funding support for specific subareas of this research. METHODS: We conducted a PubMed search using a range of search terms to retrieve peer-reviewed articles reporting US-led academic research on digital clinical measures between January 2019 and February 2021. We screened each publication against specific inclusion and exclusion criteria. We then identified and categorized research studies based on the types of academic research, sensors used, and funding sources. Finally, we compared and contrasted the funding support for these specific subareas of research and sensor types. RESULTS: The search retrieved 4240 articles of interest. Following the screening, 295 articles remained for data extraction and categorization. The top five research subareas included operations research (research analysis; n=225, 76%), analytical validation (n=173, 59%), usability and utility (data visualization; n=123, 42%), verification (n=93, 32%), and clinical validation (n=83, 28%). The three most underrepresented areas of research into digital clinical measures were ethics (n=0, 0%), security (n=1, 0.5%), and data rights and governance (n=1, 0.5%). Movement and activity trackers were the most commonly studied sensor type, and physiological (mechanical) sensors were the least frequently studied. We found that government agencies are providing the most funding for research on digital clinical measures (n=192, 65%), followed by independent foundations (n=109, 37%) and industries (n=56, 19%), with the remaining 12% (n=36) of these studies completely unfunded. CONCLUSIONS: Specific subareas of academic research related to digital clinical measures are not keeping pace with the rapid expansion and adoption of digital sensing products. An integrated and coordinated effort is required across academia, academic partners, and academic funders to establish the field of digital clinical measures as an evidence-based field worthy of our trust.


Subject(s)
Delivery of Health Care , Smartphone , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...