Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38871184

ABSTRACT

BACKGROUND: Eosinophils are elusive cells involved in allergic inflammation. Single-cell RNA Sequencing (scRNA-seq) is an emerging approach to deeply characterize cellular properties, heterogeneity, and functionality. OBJECTIVE: To comprehensively characterize the transcriptome and biological functions of human eosinophils at a site of severe allergic inflammation in the esophagus (i.e., eosinophilic esophagitis (EoE)). METHODS: We employed a gravity-based scRNA-seq methodology to sequence blood eosinophils from patients with EoE and control individuals compared to a reanalyzed public scRNA-seq dataset of human esophageal eosinophils of EoE patients. We used flow cytometry, immunostaining, and a stimulation assay to verify mRNA findings. RESULTS: In total, scRNA-seq was obtained from 586 eosinophils (188 from blood [n=6 individuals] and 398 from esophagus [n=6 individuals]). The esophageal eosinophils were composed of a population of activated eosinophils (enriched in 659 genes compared with peripheral blood-associated eosinophils) and a small population of eosinophils resembling peripheral blood eosinophils (enriched in 62 genes compared with esophageal eosinophils). Esophageal eosinophils expressed genes involved in sensing and responding to diverse stimuli, most notably interferon-, interleukin 10, histamine and leukotrienes, and succinate. Esophageal eosinophils were most distinguished from other esophageal populations by gene expression of the receptors CCR3, HRH4, SUCNR1, and VSTM1; transcription factors CEBPE, OLIG1, and OLIG2; protease PRSS33; and hallmark eosinophil gene CLC. A web of bidirectional eosinophil interactions with other esophageal populations was derived. Comparing esophageal eosinophils and mast cells revealed that esophageal eosinophils expressed genes involved in DAP12 interactions, IgG receptor-triggered events, immunoregulation, and IL-10 signaling. CONCLUSIONS: In EoE, esophageal eosinophils exist as two populations, a minority population resembling blood eosinophils and the other population characterized by high de novo transcription of diverse sensing receptors and inflammatory mediators readying them to potentially intersect with diverse cell types.

2.
Front Immunol ; 15: 1341745, 2024.
Article in English | MEDLINE | ID: mdl-38765012

ABSTRACT

Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.


Subject(s)
Integrins , Lymphocyte Activation , Animals , Mice , Integrins/metabolism , Integrins/genetics , Lymphocyte Activation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice, Knockout , Vestibular Diseases/genetics , Vestibular Diseases/immunology , Vestibular Diseases/metabolism , Face/abnormalities , Humans , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mice, Inbred C57BL , Neoplasm Proteins/genetics , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Signal Transduction , Gene Expression Regulation , Abnormalities, Multiple , Hematologic Diseases , Myeloid-Lymphoid Leukemia Protein
3.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38464095

ABSTRACT

Single-cell (sc) RNA, ATAC and Multiome sequencing became powerful tools for uncovering biological and disease mechanisms. Unfortunately, manual analysis of sc data presents multiple challenges due to large data volumes and complexity of configuration parameters. This complexity, as well as not being able to reproduce a computational environment, affects the reproducibility of analysis results. The Scientific Data Analysis Platform (https://SciDAP.com) allows biologists without computational expertise to analyze sequencing-based data using portable and reproducible pipelines written in Common Workflow Language (CWL). Our suite of computational pipelines addresses the most common needs in scRNA-Seq, scATAC-Seq and scMultiome data analysis. When executed on SciDAP, it offers a user-friendly alternative to manual data processing, eliminating the need for coding expertise. In this protocol, we describe the use of SciDAP to analyze scMultiome data. Similar approaches can be used for analysis of scRNA-Seq, scATAC-Seq and scVDJ-Seq datasets.

4.
Front Allergy ; 5: 1323405, 2024.
Article in English | MEDLINE | ID: mdl-38344408

ABSTRACT

Introduction: Atopic dermatitis (AD) is an allergic skin disease mediated by skin barrier impairment and IL-13-driven immune response. Activation of the aryl hydrocarbon receptor (AHR) has shown promise in early clinical trials for AD; however, the mechanism by which AHR partially ameliorates AD is not well known. Methods: Gene expression data from human biopsies were analyzed, and compared to gene expression from RNA-sequencing in our in-vitro HaCaT cell model system. Western blot, ELISA qRT-PCR were used to further explore the relationship between AHR and IL-13 signaling in HaCaT cells. Results: The AHR target gene CYP1A1 was decreased in lesional skin compared with healthy control skin (p = 4.30 × 10-9). Single-cell RNA sequencing (scRNAseq) demonstrated increased AHR expression (p < 1.0 × 10-4) and decreased CYP1A1 expression in lesional AD keratinocytes compared with healthy control keratinocytes (p < 0.001). Activation of AHR by AHR agonists in HaCaT cells reversed IL-13-dependent gene expression of several key genes in AD pathogenesis, most notably the eosinophil chemoattractant CCL26 (eotaxin-3). Differentially expressed genes in keratinocytes of patients with AD substantially overlapped with genes regulated by AHR agonists from HaCaT cells by RNAseq, but in reverse direction. Mechanistically, there was evidence for direct transcriptional effects of AHR; AHR binding motifs were identified in the differentially expressed genes from lesional AD keratinocytes compared to control keratinocytes, and AHR activation did not modify IL-13-dependent signal transducer and activator of transcription 6 (STAT6) translocation to the nucleus. Discussion: Together, these data suggest that the AHR pathway is dysregulated in AD and that AHR modulates IL-13 downstream signaling in keratinocytes through genome-wide, transcriptional regulatory effects.

5.
Sci Signal ; 16(802): eadg6360, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699081

ABSTRACT

The cytokine thymic stromal lymphopoietin (TSLP) mediates type 2 immune responses, and treatments that interfere with TSLP activity are in clinical use for asthma. Here, we investigated whether TSLP contributes to allergic inflammation by directly stimulating human CD4+ T cells and whether this process is operational in eosinophilic esophagitis (EoE), a disease linked to variants in TSLP. We showed that about 10% of esophageal-derived memory CD4+ T cells from individuals with EoE and less than 3% of cells from control individuals expressed the receptor for TSLP and directly responded to TSLP, as determined by measuring the phosphorylation of STAT5, a transcription factor activated downstream of TSLP stimulation. Accordingly, increased numbers of TSLP-responsive memory CD4+ T cells were present in the circulation of individuals with EoE. TSLP increased the proliferation of CD4+ T cells, enhanced type 2 cytokine production, induced the increased abundance of its own receptor, and modified the expression of 212 genes. The epigenetic response to TSLP was associated with an enrichment in BATF and IRF4 chromatin-binding sites, and these transcription factors were induced by TSLP, providing a feed-forward loop. The numbers of circulating and esophageal CD4+ T cells responsive to TSLP correlated with the numbers of esophageal eosinophils, supporting a potential functional role for TSLP in driving the pathogenesis of EoE and providing the basis for a blood-based diagnostic test based on the extent of TSLP-induced STAT5 phosphorylation in circulating CD4+ T cells. These findings highlight the potential therapeutic value of TSLP inhibitors for the treatment of EoE.


Subject(s)
Eosinophilic Esophagitis , Thymic Stromal Lymphopoietin , Humans , CD4-Positive T-Lymphocytes , Cytokines , STAT5 Transcription Factor/genetics , T-Lymphocytes
6.
PLoS Comput Biol ; 19(1): e1010863, 2023 01.
Article in English | MEDLINE | ID: mdl-36719906

ABSTRACT

Transcription factors read the genome, fundamentally connecting DNA sequence to gene expression across diverse cell types. Determining how, where, and when TFs bind chromatin will advance our understanding of gene regulatory networks and cellular behavior. The 2017 ENCODE-DREAM in vivo Transcription-Factor Binding Site (TFBS) Prediction Challenge highlighted the value of chromatin accessibility data to TFBS prediction, establishing state-of-the-art methods for TFBS prediction from DNase-seq. However, the more recent Assay-for-Transposase-Accessible-Chromatin (ATAC)-seq has surpassed DNase-seq as the most widely-used chromatin accessibility profiling method. Furthermore, ATAC-seq is the only such technique available at single-cell resolution from standard commercial platforms. While ATAC-seq datasets grow exponentially, suboptimal motif scanning is unfortunately the most common method for TFBS prediction from ATAC-seq. To enable community access to state-of-the-art TFBS prediction from ATAC-seq, we (1) curated an extensive benchmark dataset (127 TFs) for ATAC-seq model training and (2) built "maxATAC", a suite of user-friendly, deep neural network models for genome-wide TFBS prediction from ATAC-seq in any cell type. With models available for 127 human TFs, maxATAC is the largest collection of high-performance TFBS prediction models for ATAC-seq. maxATAC performance extends to primary cells and single-cell ATAC-seq, enabling improved TFBS prediction in vivo. We demonstrate maxATAC's capabilities by identifying TFBS associated with allele-dependent chromatin accessibility at atopic dermatitis genetic risk loci.


Subject(s)
Chromatin Immunoprecipitation Sequencing , High-Throughput Nucleotide Sequencing , Nerve Net , Humans , Chromatin/genetics , Deoxyribonucleases/genetics , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods
7.
Gut ; 72(5): 834-845, 2023 05.
Article in English | MEDLINE | ID: mdl-35918104

ABSTRACT

OBJECTIVE: The contribution of vitamin D (VD) deficiency to the pathogenesis of allergic diseases remains elusive. We aimed to define the impact of VD on oesophageal allergic inflammation. DESIGN: We assessed the genomic distribution and function of VD receptor (VDR) and STAT6 using histology, molecular imaging, motif discovery and metagenomic analysis. We examined the role of VD supplementation in oesophageal epithelial cells, in a preclinical model of IL-13-induced oesophageal allergic inflammation and in human subjects with eosinophilic oesophagitis (EoE). RESULTS: VDR response elements were enriched in oesophageal epithelium, suggesting enhanced VDR binding to functional gene enhancer and promoter regions. Metagenomic analysis showed that VD supplementation reversed dysregulation of up to 70% of the transcriptome and epigenetic modifications (H3K27Ac) induced by IL-13 in VD-deficient cells, including genes encoding the transcription factors HIF1A and SMAD3, endopeptidases (SERPINB3) and epithelial-mesenchymal transition mediators (TGFBR1, TIAM1, SRC, ROBO1, CDH1). Molecular imaging and chromatin immunoprecipitation showed VDR and STAT6 colocalisation within the regulatory regions of the affected genes, suggesting that VDR and STAT6 interactome governs epithelial tissue responses to IL-13 signalling. Indeed, VD supplementation reversed IL-13-induced epithelial hyperproliferation, reduced dilated intercellular spaces and barrier permeability, and improved differentiation marker expression (filaggrin, involucrin). In a preclinical model of IL-13-mediated oesophageal allergic inflammation and in human EoE, VD levels inversely associated with severity of oesophageal eosinophilia and epithelial histopathology. CONCLUSIONS: Collectively, these findings identify VD as a natural IL-13 antagonist with capacity to regulate the oesophageal epithelial barrier functions, providing a novel therapeutic entry point for type 2 immunity-related diseases.


Subject(s)
Eosinophilic Esophagitis , Receptors, Calcitriol , Humans , Inflammation/metabolism , Interleukin-13/pharmacology , Interleukin-13/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Calcitriol/genetics , Receptors, Immunologic/metabolism , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Vitamin D
8.
JCI Insight ; 7(11)2022 06 08.
Article in English | MEDLINE | ID: mdl-35472002

ABSTRACT

Inflammation of the esophageal epithelium is a hallmark of eosinophilic esophagitis (EoE), an emerging chronic allergic disease. Herein, we probed human esophageal epithelial cells at single-cell resolution during homeostasis and EoE. During allergic inflammation, the epithelial differentiation program was blocked, leading to loss of KRT6hi differentiated populations and expansion of TOP2hi proliferating, DSPhi transitioning, and SERPINB3hi transitioning populations; however, there was stability of the stem cell-enriched PDPNhi basal epithelial compartment. This differentiation program blockade was associated with dysregulation of transcription factors, including nuclear receptor signalers, in the most differentiated epithelial cells and altered NOTCH-related cell-to-cell communication. Each epithelial population expressed genes with allergic disease risk variants, supporting their functional interplay. The esophageal epithelium differed notably between EoE in histologic remission and controls, indicating that remission is a transitory state poised to relapse. Collectively, our data uncover the dynamic nature of the inflamed human esophageal epithelium and provide a framework to better understand esophageal health and disease.


Subject(s)
Eosinophilic Esophagitis , Eosinophilic Esophagitis/genetics , Eosinophilic Esophagitis/pathology , Epithelium/pathology , Homeostasis , Humans , Inflammation/genetics , RNA-Seq
9.
STAR Protoc ; 2(4): 100989, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34927097

ABSTRACT

Preparation of single-cell suspension from primary tumor tissue can provide a valuable resource for functional, genetic, proteomic, and tumor microenvironment studies. Here, we describe an effective protocol for mouse pancreatic tumor dissociation with further processing of tumor suspension for single-cell RNA sequencing analysis of cellular populations. We further provide an outline of the bioinformatics processing of the data and clustering of heterogeneous cellular populations comprising pancreatic tumors using Common Workflow Language (CWL) pipelines within user-friendly Scientific Data Analysis Platform (https://SciDAP.com). For complete details on the use and execution of this protocol, please refer to Gabitova-Cornell et al. (2020).


Subject(s)
Computational Biology/methods , Pancreatic Neoplasms , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Female , Male , Mice , Pancreas/cytology , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Software
10.
J Immunol ; 207(4): 1044-1054, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34330753

ABSTRACT

Eosinophils develop in the bone marrow from hematopoietic progenitors into mature cells capable of a plethora of immunomodulatory roles via the choreographed process of eosinophilopoiesis. However, the gene regulatory elements and transcription factors (TFs) orchestrating this process remain largely unknown. The potency and resulting diversity fundamental to an eosinophil's complex immunomodulatory functions and tissue specialization likely result from dynamic epigenetic regulation of the eosinophil genome, a dynamic eosinophil regulome. In this study, we applied a global approach using broad-range, next-generation sequencing to identify a repertoire of eosinophil-specific enhancers. We identified over 8200 active enhancers located within 1-20 kB of expressed eosinophil genes. TF binding motif analysis revealed PU.1 (Spi1) motif enrichment in eosinophil enhancers, and chromatin immunoprecipitation coupled with massively parallel sequencing confirmed PU.1 binding in likely enhancers of genes highly expressed in eosinophils. A substantial proportion (>25%) of these PU.1-bound enhancers were unique to murine, culture-derived eosinophils when compared among enhancers of highly expressed genes of three closely related myeloid cell subsets (macrophages, neutrophils, and immature granulocytes). Gene ontology analysis of eosinophil-specific, PU.1-bound enhancers revealed enrichment for genes involved in migration, proliferation, degranulation, and survival. Furthermore, eosinophil-specific superenhancers were enriched in genes whose homologs are associated with risk loci for eosinophilia and allergic diseases. Our collective data identify eosinophil-specific enhancers regulating key eosinophil genes through epigenetic mechanisms (H3K27 acetylation) and TF binding (PU.1).


Subject(s)
Chromatin/genetics , Eosinophils/metabolism , Epigenesis, Genetic/genetics , Protein Binding/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Animals , Cells, Cultured , Mice , Mice, Inbred BALB C , Myeloid Cells , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics
11.
Gigascience ; 8(7)2019 07 01.
Article in English | MEDLINE | ID: mdl-31321430

ABSTRACT

BACKGROUND: Massive growth in the amount of research data and computational analysis has led to increased use of pipeline managers in biomedical computational research. However, each of the >100 such managers uses its own way to describe pipelines, leading to difficulty porting workflows to different environments and therefore poor reproducibility of computational studies. For this reason, the Common Workflow Language (CWL) was recently introduced as a specification for platform-independent workflow description, and work began to transition existing pipelines and workflow managers to CWL. FINDINGS: Herein, we present CWL-Airflow, a package that adds support for CWL to the Apache Airflow pipeline manager. CWL-Airflow uses CWL version 1.0 specification and can run workflows on stand-alone MacOS/Linux servers, on clusters, or on a variety of cloud platforms. A sample CWL pipeline for processing of chromatin immunoprecipitation sequencing data is provided. CONCLUSIONS: CWL-Airflow will provide users with the features of a fully fledged pipeline manager and the ability to execute CWL workflows anywhere Airflow can run-from a laptop to a cluster or cloud environment. CWL-Airflow is available under Apache License, version 2.0 (Apache-2.0), and can be downloaded from https://barski-lab.github.io/cwl-airflow, https://scicrunch.org/resolver/RRID:SCR_017196.


Subject(s)
Chromatin Immunoprecipitation Sequencing/methods , Genomics/methods , Software , Workflow , Animals , Big Data , Humans
12.
JCI Insight ; 3(18)2018 09 20.
Article in English | MEDLINE | ID: mdl-30232290

ABSTRACT

Altered response to the intestinal microbiota strongly associates with inflammatory bowel disease (IBD); however, how commensal microbial cues are integrated by the host during the pathogenesis of IBD is not understood. Epigenetics represents a potential mechanism that could enable intestinal microbes to modulate transcriptional output during the development of IBD. Here, we reveal a histone methylation signature of intestinal epithelial cells isolated from the terminal ilea of newly diagnosed pediatric IBD patients. Genes characterized by significant alterations in histone H3-lysine 4 trimethylation (H3K4me3) showed differential enrichment in pathways involving immunoregulation, cell survival and signaling, and metabolism. Interestingly, a large subset of these genes was epigenetically regulated by microbiota in mice and several microbiota-sensitive epigenetic targets demonstrated altered expression in IBD patients. Remarkably though, a substantial proportion of these genes exhibited H3K4me3 levels that correlated with the severity of intestinal inflammation in IBD, despite lacking significant differential expression. Collectively, these data uncover a previously unrecognized epigenetic profile of IBD that can be primed by commensal microbes and indicate sensitive targets in the epithelium that may underlie how microbiota predispose to subsequent intestinal inflammation and disease.


Subject(s)
Crohn Disease/metabolism , Epigenesis, Genetic , Gastrointestinal Microbiome/physiology , Inflammation , Adolescent , Animals , Child , Epithelial Cells/metabolism , Female , Histones/metabolism , Humans , Ileum , Male , Methylation , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...