Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 372: 112043, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31226311

ABSTRACT

Kissorphin (KSO) is a new peptide derived from kisspeptin-10. Previous study has indicated that this peptide displays neuropeptide FF (NPFF)-like anti-opioid activity. Herein, we examined the influence of KSO (1; 3, and 10 nmol, intravenously [i.v.]), on the rewarding action of morphine (5 mg/kg, intraperitoneally [i.p.]), using the unbiased design of the conditioned place preference (CPP) paradigm in rats. To test the effect of KSO on the acquisition of morphine-induced CPP, KSO and morphine were co-injected during conditioning with no drugs treatment on the test day. To investigate the effect of KSO on the expression of morphine-induced CPP, morphine alone was given during the conditioning phase (1 × 3 days) and KSO was administered 5 min prior to the placement in the CPP apparatus on the test day. To estimate the influence of KSO on the reinstatement of morphine-induced CPP, KSO was given 5 min before a priming dose of morphine (5 mg/kg, i.p.) on the reinstatement test day. The results show that KSO inhibited the acquisition, expression and reinstatement of morphine-induced CPP. The strongest effect of KSO was observed at the dose of 10 nmol (acquisition and reinstatement) or 1 nmol (expression). KSO given alone, neither induced place preference, nor aversion. Furthermore, the morphine-modulating effects of KSO were markedly antagonized by pretreatment with RF9 (10 nmol, i.v.), the NPFF receptors selective antagonist. Thus, KSO inhibited the morphine-induced CPP mainly by involving specific activation of NPFF receptors. Overall, these data further support the anti-opioid character of KSO.


Subject(s)
Conditioning, Classical/drug effects , Conditioning, Psychological/drug effects , Kisspeptins/pharmacology , Analgesics, Opioid/metabolism , Analgesics, Opioid/pharmacology , Animals , Behavior, Animal/drug effects , Conditioning, Operant/drug effects , Dose-Response Relationship, Drug , Kisspeptins/metabolism , Male , Morphine/pharmacology , Rats , Rats, Wistar , Receptors, Neuropeptide/metabolism , Receptors, Neuropeptide/physiology , Reward
2.
Physiol Behav ; 185: 112-120, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29294304

ABSTRACT

Preclinical data indicated that the metabotropic glutamate receptors 5 (mGlu5) and glutamate receptors 2/3 (mGlu2/3) are involved in modulating morphine antinociception. However, little is known about the role of metabotropic glutamate receptors 7 (mGlu7) in this phenomenon. We compared the effects of AMN082 (0.1, 1 or 5mg/kg, ip), a selective mGlu7 allosteric agonist, LY354740 (0.1, 1 or 5mg/kg, ip), an mGlu2/3 agonist and MTEP (0.1, 1 or 5mg/kg, ip), a selective mGlu5 antagonist, on the acute antinociceptive effect of morphine (5mg/kg, sc) and also on the development and expression of tolerance to morphine analgesia in the tail-immersion test in mice. To determine the role of mGlu7 in morphine tolerance, and the association of the mGlu7 effect with the N-methyl-d-aspartate (NMDA) receptors regulation, we used MMPIP (10mg/kg, ip), a selective mGlu7 antagonist and MK-801, a NMDA antagonist. Herein, the acute administration of AMN082, MTEP or LY354740 alone failed to evoked antinociception, and did not affect morphine (5mg/kg, sc) antinociception. However, these ligands inhibited the development of morphine tolerance, and we indicated that MMPIP reversed the inhibitory effect of AMN082. When given together, the non-effective doses of AMN082 and MK-801 did not alter the tolerance to morphine. Thus, mGlu7, similarly to mGlu2/3 and mGlu5, are involved in the development of tolerance to the antinociceptive effects of morphine, but not in the acute morphine antinociception. Furthermore, while mGlu7 are engaged in the development of morphine tolerance, no interaction exists between mGlu7 and NMDA receptors in this phenomenon.


Subject(s)
Analgesics/pharmacology , Benzhydryl Compounds/pharmacology , Excitatory Amino Acid Agonists/pharmacology , Morphine/pharmacology , Nociceptive Pain/drug therapy , Receptors, Metabotropic Glutamate/agonists , Allosteric Regulation , Animals , Bridged Bicyclo Compounds/pharmacology , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Drug Tolerance , Excitatory Amino Acid Antagonists/pharmacology , Male , Mice , Nociceptive Pain/metabolism , Pyridines/pharmacology , Pyridones/pharmacology , Random Allocation , Receptors, Metabotropic Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Tail , Thiazoles/pharmacology
3.
Brain Res ; 1642: 389-396, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27085203

ABSTRACT

Amphetamine (AMPH) induces deficits in cognition, and depressive-like behavior following withdrawal. The aim of the present study was to investigate whether pre-treatment with memantine (5mg/kg, i.p.), a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, attenuates memory impairment induced by withdrawal from a 1 day binge regimen of AMPH (2mg/kg, four times every 2h, i.p.), in the novel object recognition test in rats. Herein, the influence of scopolamine (0.1mg/kg), an antagonist of the muscarinic cholinergic receptors, and the impact of MK-801 (0.1mg/kg), an antagonist of the NMDA receptors, on the memantine effect, were ascertained. Furthermore, the impact of memantine (5; 10; 20mg/kg, i.p.) was measured on depression-like effects of abstinence, 14 days after the last AMPH treatment (2mg/kg×1×14 days), in the forced swim test. In this test, the efficacy of memantine was compared to that of tricyclic antidepressant imipramine (10; 20; 30mg/kg, i.p.). Our study indicated that withdrawal from a binge regimen of AMPH impaired recognition memory. This effect was attenuated by administration of memantine at both 72h and 7 days of withdrawal. Moreover, prior administration of scopolamine, but not MK-801, decreased the memantine-induced recognition memory improvement. In addition, memantine reversed the AMPH-induced depressive-like behavior in the forced swim test in rats. The antidepressant-like effects of memantine were stronger than those of imipramine. Our study indicates that memantine constitutes a useful approach towards preventing cognitive deficits induced by withdrawal from an AMPH binge regimen and by depressive-like behavior during AMPH abstinence.


Subject(s)
Amphetamine-Related Disorders/drug therapy , Antidepressive Agents/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Memantine/pharmacology , Nootropic Agents/pharmacology , Substance Withdrawal Syndrome/drug therapy , Amphetamine/administration & dosage , Amphetamine/adverse effects , Amphetamine-Related Disorders/metabolism , Amphetamine-Related Disorders/psychology , Animals , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/adverse effects , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Disease Models, Animal , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Imipramine/pharmacology , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Muscarinic Antagonists/pharmacology , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Scopolamine/pharmacology , Substance Withdrawal Syndrome/metabolism , Substance Withdrawal Syndrome/psychology
4.
Article in English | MEDLINE | ID: mdl-25448778

ABSTRACT

Previous studies have indicated that metabotropic glutamate receptors 7 (mGluR7s) are involved in drug addiction. However, the role of these receptors in drug-induced behavioral sensitization is unknown. The aim of the present study was to determine whether systemic injection of AMN082, a selective mGluR7 allosteric agonist, reduces the cocaine- and morphine-induced hyperactivity and the development and expression of locomotor sensitization, and also affects the reciprocal cross-sensitization to the stimulant effect of cocaine and morphine in mice. AMN082 (1.25-10.0 mg/kg, i.p.) did not have an impact on locomotion of naive mice and did not affect the acute cocaine- or morphine-induced hyperactivity, except the dose of 10 mg/kg that suppressed the locomotor effect of both drugs. Repeated exposure to cocaine or morphine (10 mg/kg, 5× every 3 days) gradually increased locomotion during induction of sensitization and after 4 (cocaine) or 7 day (morphine) withdrawal phase when challenged with cocaine (10 mg/kg, i.p.) or morphine (10 mg/kg, i.p.) on day 17 or 20, respectively. Pretreatment of animals with the lower doses of AMN082 (1.25-5.0 mg/kg, i.p.), 30 min before every cocaine or morphine injection during repeated drug administration or before cocaine or morphine challenge, dose-dependently attenuated the development, as well as the expression of cocaine or morphine locomotor sensitization. AMN082 also inhibited the reciprocal cross-sensitization between these drugs. Prior to administration of MMPIP (10 mg/kg, i.p.), a selective mGluR7 antagonist reversed the inhibitory effect of AMN082 on the development or expression of cocaine or morphine sensitization. These data indicate that AMN082 attenuated the development and expression of cocaine and morphine sensitization, and the reciprocal cross-sensitization via a mechanism that involves mGluR7s. Thus, AMN082 might have therapeutic implications not only in the treatment of cocaine or opioid addiction but also in the treatment of cocaine/opioid polydrug-abusers.


Subject(s)
Benzhydryl Compounds/pharmacology , Central Nervous System Sensitization/drug effects , Cocaine/antagonists & inhibitors , Locomotion/drug effects , Morphine/antagonists & inhibitors , Receptors, Metabotropic Glutamate/agonists , Allosteric Regulation/drug effects , Animals , Cocaine/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Male , Mice , Morphine/pharmacology , Pyridones/pharmacology , Receptors, Metabotropic Glutamate/antagonists & inhibitors
5.
Peptides ; 48: 89-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23965295

ABSTRACT

Analogs of deltorphins, such as cyclo(Nδ, Nδ-carbonyl-d-Orn2, Orn4)deltorphin (DEL-6) and deltorphin II N-(ureidoethyl)amide (DK-4) are functional agonists predominantly for the delta opioid receptors (DOR) in the guinea-pig ileum and mouse vas deferens bioassays. The purpose of this study was to examine an influence of these peptides (5, 10 or 20 nmol, i.c.v.) on the acute cocaine-induced (10mg/kg, i.p.) locomotor activity and the expression of sensitization to cocaine locomotor effect. Sensitization to locomotor effect of cocaine was developed by five injections of cocaine at the dose of 10mg/kg, i.p. every 3 days. Our results indicated that DK-4 and DEL-6 differently affected the acute and sensitized cocaine locomotion. Co-administration of DEL-6 with cocaine enhanced acute cocaine locomotion only at the dose of 10 nmol, with minimal effects at the doses 5 and 20 nmol, whereas co-administration of DK-4 with cocaine enhanced acute cocaine-induced locomotion in a dose-dependent manner. Similarly to the acute effects, DEL-6 only at the dose of 10 nmol but DK-4 dose-dependently enhanced the expression of cocaine sensitization. Pre-treatment with DOR antagonist - naltrindole (5 nmol, i.c.v.) and mu opioid receptor (MOR) antagonist, ß-funaltrexamine abolished the ability of both peptides to potentiate the effects of cocaine. Our study suggests that MOR and DOR are involved in the interactions between cocaine and both deltorphins analogs. A distinct dose-response effects of these peptides on cocaine locomotion probably arise from differential functional activation (targeting) of the DOR and MOR by both deltorphins analogs.


Subject(s)
Cocaine/administration & dosage , Motor Activity/drug effects , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/metabolism , Animals , Humans , Mice , Naltrexone/administration & dosage , Naltrexone/analogs & derivatives , Oligopeptides/administration & dosage , Pain Measurement , Receptors, Opioid, delta/physiology , Receptors, Opioid, mu/physiology
6.
Article in English | MEDLINE | ID: mdl-23623810

ABSTRACT

Chronic amphetamine use results in anxiety-like states after drug cessation. The aim of the study was to determine a role of ionotropic and metabotropic glutamate receptor ligands in amphetamine-evoked withdrawal anxiety in the elevated plus-maze test in rats. In our study memantine (8 and 12 mg/kg), a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist did not reduce amphetamine withdrawal anxiety. Acamprosate (NMDA and metabotropic glutamate 5 receptor (mGluR5) antagonist) at the dose 200 and 400mg/kg showed anxiolytic-like effect, thus increasing the percent of time spent in open arms and a number of open arm entries. mGluR5 selective antagonist, MTEP (3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine hydrochloride) and mGluR2/3 agonist, LY354740 (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid), caused effects similar to acamprosate at doses 1.25-5mg/kg and 2.5-5mg/kg, respectively. None of the glutamate ligands influenced locomotor activity of rats when given to the saline-treated group. Taking into account the positive correlation between amphetamine withdrawal-induced anxiety and relapse to amphetamine taking, our results suggest that modulation of mGluRs may prevent relapse to amphetamine and might pose a new direction in amphetamine abuse therapy.


Subject(s)
Amphetamine/adverse effects , Anxiety/drug therapy , Receptors, Ionotropic Glutamate/antagonists & inhibitors , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Substance Withdrawal Syndrome/drug therapy , Acamprosate , Animals , Anxiety/complications , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds/therapeutic use , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Agonists/therapeutic use , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/therapeutic use , Ligands , Male , Memantine/pharmacology , Memantine/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Rats , Substance Withdrawal Syndrome/complications , Taurine/analogs & derivatives , Taurine/pharmacology , Taurine/therapeutic use , Thiazoles/pharmacology , Thiazoles/therapeutic use
7.
Peptides ; 39: 103-10, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23183627

ABSTRACT

The antinociceptive effects of analogs of deltorphins: cyclo(Nδ,Nδ-carbonyl-D-Orn2, Orn4)deltorphin (DEL-6) and deltorphin II N-(ureidoethyl)amide (DK-4) after intracerebroventricular (i.c.v.) administration were investigated in the tail-immersion test in rats. Morphine, the most commonly used µ-opioid receptors (MOR) agonist, was employed as a reference compound. The contribution of the MOR, δ-(DOR) and κ-opioid receptors (KOR) in antinociceptive effects of the deltorphins analogs was studies using selective antagonists of these receptors. The results indicated that DK-4 (5, 10 and 20 nmol) and DEL-6 (5, 10 and 20 nmol) were the most effective in alleviating thermal pain at the dose of 20 nmol. The antinociceptive potency of DEL-6 at the dose of 20 nmol was approximately equal but DK-4 at the dose of 20 nmol was less effective than morphine at the dose of 13 nmol. DOR antagonist - naltrindole (NTI, 5 nmol) very strongly and, to the lower extent MOR antagonist - ß-funaltrexamine (ß-FNA, 5 nmol), inhibited antinociceptive effect of DK-4 (20 nmol). In turn, ß-FNA was more potent than NTI in inhibition of the antinociceptive effects of DEL-6. Co-administration of DEL-6 and morphine at doses of 5 nmol, which do not produce measurable antinociception, generated additive antinociceptive effect. Chronic intraperitoneal (i.p.) injection of morphine (9 days) displayed a marked analgesic tolerance to the challenge dose of morphine and a slight cross-tolerance to challenge doses of DEL-6 and DK-4, given i.c.v. These findings indicate that the new deltorphin analogs recruit DOR and MOR to attenuate the nociceptive response to acute thermal stimuli.


Subject(s)
Analgesics, Opioid/pharmacology , Nociception/drug effects , Oligopeptides/pharmacology , Analgesics, Opioid/administration & dosage , Animals , Drug Synergism , Drug Tolerance , Male , Morphine/administration & dosage , Morphine/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Oligopeptides/administration & dosage , Pain Measurement , Rats , Rats, Wistar , Receptors, Opioid, delta/agonists , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/antagonists & inhibitors , Receptors, Opioid, kappa/metabolism
8.
Peptides ; 33(1): 156-63, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22197492

ABSTRACT

Many data indicate that endogenous opioid system is involved in amphetamine-induced behavior. Neuropeptide FF (NPFF) possesses opioid-modulating properties. The aim of the present study was to determine whether pharmacological modulation of NPFF receptors modify the expression of amphetamine-induced conditioned place preference (CPP) and amphetamine withdrawal anxiety-like behavior, both processes relevant to drug addiction/abuse. Intracerebroventricular (i.c.v.) injection of NPFF (5, 10, and 20 nmol) inhibited the expression of amphetamine CPP at the doses of 10 and 20 nmol. RF9, the NPFF receptors antagonist, reversed inhibitory effect of NPFF (20 nmol, i.c.v.) at the doses of 10 and 20 nmol and did not show any effect in amphetamine- and saline conditioned rats. Anxiety-like effect of amphetamine withdrawal was measured 24h after the last (14 days) amphetamine (2.5mg/kg, i.p.) treatment in the elevated plus-maze test. Amphetamine withdrawal decreased the percent of time spent by rats in the open arms and the percent of open arms entries. RF9 (5, 10, and 20 nmol, i.c.v.) significantly reversed these anxiety-like effects of amphetamine withdrawal and elevated the percent of time spent by rats in open arms at doses of 5 and 10 nmol, and the percent of open arms entries in all doses used. NPFF (20 nmol) pretreatment inhibited the effect of RF9 (10 nmol). Our results indicated that stimulation or inhibition of NPFF receptors decrease the expression of amphetamine CPP and amphetamine withdrawal anxiety, respectively. These findings may have implications for a better understanding of the processes involved in amphetamine dependence.


Subject(s)
Amphetamine/adverse effects , Anxiety/chemically induced , Oligopeptides/pharmacology , Receptors, Neuropeptide/metabolism , Substance Withdrawal Syndrome , Adamantane/analogs & derivatives , Adamantane/pharmacology , Animals , Behavior, Animal , Conditioning, Psychological , Dipeptides/pharmacology , Dose-Response Relationship, Drug , Male , Maze Learning/drug effects , Rats , Rats, Wistar , Receptors, Neuropeptide/antagonists & inhibitors , Substance Withdrawal Syndrome/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...