Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38894468

ABSTRACT

We demonstrated, for the first time, micro-ring resonator assisted photothermal spectroscopy measurement of a gas phase sample. The experiment used a telecoms wavelength probe laser that was coupled to a silicon nitride photonic integrated circuit using a fibre array. We excited the photothermal effect in the water vapor above the micro-ring using a 1395 nm diode laser. We measured the 1f and 2f wavelength modulation response versus excitation laser wavelength and verified the power scaling behaviour of the signal.

2.
Appl Opt ; 55(19): 5025-32, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27409186

ABSTRACT

We have designed and fabricated a 100 µm×100 µm four-sector binary subwavelength reflecting polarization microconverter in a gold film. Using finite-difference time-domain-aided numerical simulations and experiments, the micropolarizer was shown to convert an incident linearly polarized Gaussian beam of wavelength 532 nm into an azimuthally polarized beam. Conditions for generating on-axis regions of nonzero intensity when using propagating optical vortices with different initial polarization were deduced. By putting a spiral phase plate into an azimuthally polarized beam, the intensity pattern was shown to change from diffraction rings to a central peak.

3.
Appl Opt ; 48(19): 3722-30, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19571929

ABSTRACT

We report the design, fabrication, and characterization of a new nanophotonic device comprising a two-dimensional photonic crystal (PhC) lens of size 3x4 microm fabricated in silicon-on-insulator. The PhC lens is put at the output of a planar waveguide of width 4.5 microm to couple light into a planar waveguide of width 1 microm, with two waveguides being of length 5 mm. A 1 microm off-axis displacement of the smaller waveguide leads to an 8-fold reduction of output light intensity, which means that the focal spot size at output of the PhC lens in silicon is less than 1 microm. The simulation has shown that the PhC lens has maximal transmittance at 1.55 microm, with the coupling efficiency being 73%. The focal spot size of the lens in air calculated at the FWHM is 0.32lambda (where lambda is the wavelength).

SELECTION OF CITATIONS
SEARCH DETAIL
...