Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(27): 39331-39349, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816631

ABSTRACT

In this study, a biogenic magnetic nanocomposite, HAP@DEX@MNP, using hydroxyapatite from eggshell waste and dextran was developed to efficiently remove 2,4-D from aqueous solutions. The magnetic nano biocomposite underwent rigorous characterization using a comprehensive suite of analytical techniques, including FTIR, XRD, FESEM, EDX, TEM, and VSM. FTIR analysis was used to validate the existence of pivotal functional groups, such as phosphate, carbonyl, hydroxyl, and iron oxide. XRD analysis verified both the crystalline nature of hydroxyapatite and the successful integration of dextran and hematite within the composite structure. FESEM and EDX examinations provided valuable insights into the surface morphology and elemental composition. TEM observations elucidated the existence of nano-sized particles underscoring the unique structural characteristics of the nanocomposite. Batch adsorption experiments were conducted under optimized conditions, highlighting the critical role of pH 2 for efficient 2,4-D removal. The mechanisms driving the binding of 2,4-D to HAP@DEX@MNP were found to encompass diverse interactions, encompassing electrostatic forces, hydrogen bonding, π-π interactions, and van der Waals forces. Adsorption isotherm studies revealed both monolayer and multilayer adsorption, with the Langmuir and Freundlich models fitting well, indicating a maximal adsorption capacity of 217.39 µg/g at 25 °C. Kinetic investigations supported the pseudo-second-order model for efficient adsorption dynamics, and thermodynamic analysis emphasized the versatility of HAP@DEX@MNP across different temperatures. Importantly, the study highlighted the remarkable regenerative capacity of the nanocomposite using a 0.1 M NaOH solution, positioning it as an environmentally friendly option for water treatment. In conclusion, HAP@DEX@MNP holds significant potential for diverse applications in addressing global water treatment and environmental challenges.


Subject(s)
Dextrans , Durapatite , Nanocomposites , Water Pollutants, Chemical , Durapatite/chemistry , Nanocomposites/chemistry , Adsorption , Dextrans/chemistry , Water Pollutants, Chemical/chemistry , 2,4-Dichlorophenoxyacetic Acid/chemistry , Water Purification/methods , Kinetics
2.
Environ Sci Pollut Res Int ; 30(10): 27846-27862, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36394810

ABSTRACT

The increasing generation of toxic dye wastewater from various enterprises continues to be a serious public health issue and happens to be of environmental concern, posing a significant challenge to existing conventional water treatment facilities. Malachite green (MG) and Eriochrome Black T (EBT) are extremely hazardous and carcinogenic substances; hence it is crucial to remove them from water bodies. A well-known cleaner, more economical, and environmentally friendly treatment method is adsorption. The kind of adsorbent material employed determines how well the treatment procedure works. A physiologically compatible nanocomposite adsorbent (HAP@CT@MNP) was fabricated from laboratory synthesized hydroxyapatite (HAP) and magnetite (MNP) for its application in the wastewater remediation process. The ability of the fabricated nanocomposite to remove the harmful dyes EBT and MG from a simulated wastewater was evaluated. The impact of operational parameters including pH, adsorbate concentration, adsorbent dose, contact time, and temperature was examined to gauge the maximum adsorption capacity of the developed nanocomposite. The optimum pH for the eradication of EBT and MG were found to be 3 and 7.4, respectively. The maximum capacity evaluated was 222 mg/g and 500 mg/g at room temperature and at contact time of 50 and 40 min respectively. The binding of either EBT or MG followed the monolayer Langmuir model and kinetic studies revealed the suitability of pseudo-second-order model. Studies using spectroscopy and isotherm modeling showed that the main mechanism controlling the adsorption of EBT and MG onto HAP@CT@MNP is physisorption. The efficacy of the adsorbent to be reused with 8% loss in its efficiency reveals the economic viability of HAP@CT@MNP. The current work showed that a biocompatible nanocomposite could be successfully fabricated and used as an enhanced adsorbent for the quick and effective removal of the toxic dyes EBT and MG from wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Kinetics , Coloring Agents , Durapatite/chemistry , Adsorption , Hydrogen-Ion Concentration , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...