Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1277: 341674, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37604625

ABSTRACT

Lateral flow assays (LFAs) provide a simple and quick option for diagnosis and are widely adopted for point-of-care or at-home tests. However, their sensitivity is often limited. Most LFAs only allow 50 µL samples while various sample types such as saliva could be collected in much larger volumes. Adapting LFAs to accommodate larger sample volumes can improve assay sensitivity by increasing the number of target analytes available for detection. Here, a simple agglutination system comprising biotinylated antibody (Ab) and streptavidin (SA) is presented. The Ab and SA agglutinate into large aggregates due to multiple biotins per Ab and multiple biotin binding sites per SA. Dynamic light scattering (DLS) measurements showed that the agglutinated aggregate could reach a diameter of over 0.5 µm and over 1.5 µm using poly-SA. Through both experiments and Monte Carlo modeling, we found that high valency and equivalent concentrations of the two aggregating components were critical for successful agglutination. The simple agglutination system enables antigen capture from large sample volumes with biotinylated Ab and a swift transition into aggregates that can be collected via filtration. Combining the agglutination system with conventional immunoassays, an agglutination assay is proposed that enables antigen detection from large sample volumes using an in-house 3D-printed device. As a proof-of-concept, we developed an agglutination assay targeting SARS-CoV-2 nucleocapsid antigen for COVID-19 diagnosis from saliva. The assay showed a 10-fold sensitivity enhancement when increasing sample volume from 50 µL to 2 mL, with a final limit of detection (LoD) of 10 pg mL-1 (∼250 fM). The assay was further validated in negative saliva spiked with gamma-irradiated SARS-CoV-2 and showed an LoD of 250 genome copies per µL. The proposed agglutination assay can be easily developed from existing LFAs to facilitate the processing of large sample volumes for improved sensitivity.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Antibodies , Biotin , Agglutination
3.
J Clin Microbiol ; 60(3): e0207021, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35107302

ABSTRACT

At-home testing with rapid diagnostic tests (RDTs) for respiratory viruses could facilitate early diagnosis, guide patient care, and prevent transmission. Such RDTs are best used near the onset of illness when viral load is highest and clinical action will be most impactful, which may be achieved by at-home testing. We evaluated the diagnostic accuracy of the QuickVue Influenza A+B RDT in an at-home setting. A convenience sample of 5,229 individuals who were engaged with an on-line health research platform were prospectively recruited throughout the United States. "Flu@home" test kits containing a QuickVue RDT and reference sample collection and shipping materials were prepositioned with participants at the beginning of the study. Participants responded to daily symptom surveys. If they reported experiencing cough along with aches, fever, chills, and/or sweats, they used their flu@home kit following instructions on a mobile app and indicated what lines they saw on the RDT. Of the 976 participants who met criteria to use their self-collection kit and completed study procedures, 202 (20.7%) were positive for influenza by qPCR. The RDT had a sensitivity of 28% (95% CI = 21 to 36) and specificity of 99% (98 to 99) for influenza A, and 32% (95% CI = 20 to 46) and 99% (95% CI = 98 to 99), for influenza B. Our results support the concept of app-supported, prepositioned at-home RDT kits using symptom-based triggers, although it cannot be recommended with the RDT used in this study. Further research is needed to determine ways to improve the accuracy and utility of home-based testing for influenza.


Subject(s)
Influenza, Human , Mobile Applications , Diagnostic Tests, Routine , Fever , Humans , Influenza, Human/diagnosis , Postal Service , Sensitivity and Specificity
4.
JMIR Public Health Surveill ; 8(2): e28268, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35191852

ABSTRACT

BACKGROUND: Rapid diagnostic tests (RDTs) for influenza used by individuals at home could potentially expand access to testing and reduce the impact of influenza on health systems. Improving access to testing could lead to earlier diagnosis following symptom onset, allowing more rapid interventions for those who test positive, including behavioral changes to minimize spread. However, the accuracy of RDTs for influenza has not been determined in self-testing populations. OBJECTIVE: This study aims to assess the accuracy of an influenza RDT conducted at home by lay users with acute respiratory illness compared with that of a self-collected sample by the same individual mailed to a laboratory for reference testing. METHODS: We conducted a comparative accuracy study of an at-home influenza RDT (Ellume) in a convenience sample of individuals experiencing acute respiratory illness symptoms. Participants were enrolled in February and March 2020 from the Greater Seattle region in Washington, United States. Participants were mailed the influenza RDT and reference sample collection materials, which they completed and returned for quantitative reverse-transcription polymerase chain reaction influenza testing in a central laboratory. We explored the impact of age, influenza type, duration, and severity of symptoms on RDT accuracy and on cycle threshold for influenza virus and ribonuclease P, a marker of human DNA. RESULTS: A total of 605 participants completed all study steps and were included in our analysis, of whom 87 (14.4%) tested positive for influenza by quantitative reverse-transcription polymerase chain reaction (70/87, 80% for influenza A and 17/87, 20% for influenza B). The overall sensitivity and specificity of the RDT compared with the reference test were 61% (95% CI 50%-71%) and 95% (95% CI 93%-97%), respectively. Among individuals with symptom onset ≤72 hours, sensitivity was 63% (95% CI 48%-76%) and specificity was 94% (95% CI 91%-97%), whereas, for those with duration >72 hours, sensitivity and specificity were 58% (95% CI 41%-74%) and 96% (95% CI 93%-98%), respectively. Viral load on reference swabs was negatively correlated with symptom onset, and quantities of the endogenous marker gene ribonuclease P did not differ among reference standard positive and negative groups, age groups, or influenza subtypes. The RDT did not have higher sensitivity or specificity among those who reported more severe illnesses. CONCLUSIONS: The sensitivity and specificity of the self-test were comparable with those of influenza RDTs used in clinical settings. False-negative self-test results were more common when the test was used after 72 hours of symptom onset but were not related to inadequate swab collection or severity of illness. Therefore, the deployment of home tests may provide a valuable tool to support the management of influenza and other respiratory infections.


Subject(s)
Influenza, Human , Humans , Influenza, Human/diagnosis , Prospective Studies , Ribonuclease P , Self-Testing , Sensitivity and Specificity
5.
Anal Chem ; 94(2): 1011-1021, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34920665

ABSTRACT

Point-of-care diagnostics often use isothermal nucleic acid amplification for qualitative detection of pathogens in low-resource healthcare settings but lack sufficient precision for quantitative applications such as HIV viral load monitoring. Although viral load (VL) monitoring is an essential component of HIV treatment, commercially available tests rely on relatively high-resource chemistries like real-time polymerase chain reaction and are thus used on an infrequent basis for millions of people living with HIV in low-income countries. To address the constraints of low-resource settings on nucleic acid quantification, we describe a recombinase polymerase amplification and lateral flow detection approach that quantifies HIV-1 DNA or RNA by comparison to a competitive internal amplification control (IAC) of a known copy number, which may be set to any useful threshold (in our case, a clinically relevant threshold for HIV treatment failure). The IAC is designed to amplify alongside the HIV target with a similar efficiency, allowing for normalization of the assay to variation or inhibition and enabling an endpoint readout that is compatible with commercially available kits for nucleic acid lateral flow detection and interpretable with minimal instrumentation or by the naked eye. We find that this approach can reliably differentiate ≤600 or ≥1400 copies of HIV DNA from a 1000-copy threshold when lateral flow strips are imaged with a conventional office scanner and analyzed with free densitometry software. We further demonstrate a user-friendly adaptation of this analysis to process cell phone photographs with an automated script. Alternatively, we show via a survey that 21 minimally trained volunteers could reliably resolve ≥10-fold (log10) differences of HIV DNA or RNA by naked eye interpretation of lateral flow results. This amplification and detection workflow requires minimal instrumentation, takes just 30 min to complete, and when combined with a suitable sample preparation method, may enable HIV VL testing while the patient waits or a self-test, which has the potential to improve care. This approach may be adapted for other applications that require quantitative analysis of a nucleic acid target in low-resource settings.


Subject(s)
HIV Infections , Nucleic Acid Amplification Techniques , HIV Infections/diagnosis , Humans , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing , RNA, Viral/genetics , Recombinases , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...