Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Microbiol ; 15: 1331714, 2024.
Article in English | MEDLINE | ID: mdl-38585700

ABSTRACT

Introduction: Antibiotic resistance represents a growing global threat, and thus the motivation to develop novel and combined methods of bacterial inactivation is increasing. Electroporation is a technique in which electric pulses of sufficient strength are applied to permeabilize cells, including bacteria. Combining antibacterials with electroporation is a promising strategy to potentiate their bactericidal and bacteriostatic effectiveness. This approach has already proved useful for increasing bacterial inactivation, yet most studies so far have mainly focused on the maximal achievable effects, and less on the underlying mechanisms. We recently demonstrated that in the Gram-negative (G-) bacterium Escherichia coli, electroporation potentiates antibacterials targeting the peptidoglycan wall more than those with intracellular targets. However, in Gram-positive (G+) bacteria, the wall is directly accessible from the outside, and thus the dependence of potentiation on the antibacterial's target may be rather different. Here, we compare the inactivation and growth inhibition of the G+ bacterium Lactiplantibacillus plantarum for two antibiotics with different modes of action: ampicillin (inhibits cell-wall synthesis) and tetracycline (inhibits intracellular protein synthesis). Methods: We used antibiotic concentrations ranging from 0 to 30 × MIC (minimum inhibitory concentration that we predetermined for each antibiotic), a single 1-ms electric pulse with an amplitude from 0 to 20 kV/cm, and post-pulse pre-dilution incubation of 24 h or 1 h. Results: Electroporation increased the inhibition and inactivation efficiency of both antibiotics, but this was more pronounced for tetracycline, with statistical significance mostly limited to 24-h incubation. In general, both inhibition and inactivation grew stronger with increasing antibiotic concentration and electric field amplitude. Discussion: Our results indicate that electroporation potentiates inactivation of G+ bacteria to a larger extent for antibiotics that inhibit intracellular processes and require transport into the cytoplasm, and to a smaller extent for antibiotics that inhibit cell-wall synthesis. This is the inverse of the relation observed in G- bacteria, and can be explained by the difference in the envelope structure: in G- bacteria the outer membrane must be breached for wall-inhibiting antibiotics to access their target, whereas in G+ bacteria the wall is inherently accessible from the outside and permeabilization does not affect this access.

3.
Radiol Oncol ; 57(1): 59-69, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36609540

ABSTRACT

BACKGROUND: Some previous research showed that average daily exposure to extremely low frequency (ELF) magnetic fields (MF) of more than 0.3 or 0.4 µT could potentially increase risk of childhood leukaemia. MATERIALS AND METHODS: To allow calculations of ELF MF around high voltage (HV) power lines (PL) for the whole Slovenia, a new three-dimensional method including precision terrain elevation data was developed to calculate the long-term average ELF MF. Data on population of Slovenian children and adolescents and on cancer patients with leukaemia's aged 0-19 years, brain tumours at age 0-29, and cancer in general at age 0-14 for a 12-year period 2005-2016 was obtained from the Slovenian Cancer Registry. RESULTS: According to the large-scale calculation for the whole country, only 0.5% of children and adolescents under the age of 19 in Slovenia lived in an area near HV PL with ELF MF density greater than 0.1 µT. The risk of cancer for children and adolescents living in areas with higher ELF MF was not significantly different from the risk of their peers. CONCLUSIONS: The new method enables relatively fast calculation of the value of low-frequency magnetic fields for arbitrary loads of the power distribution network, as the value of each source for arbitrary load is calculated by scaling the value for nominal load, which also enables significantly faster adjustment of calculated estimates in the power distribution network.


Subject(s)
Brain Neoplasms , Leukemia , Humans , Child , Adolescent , Infant, Newborn , Infant , Child, Preschool , Young Adult , Adult , Magnetic Fields , Risk , Leukemia/complications , Leukemia/epidemiology , Slovenia/epidemiology
4.
Front Microbiol ; 12: 722232, 2021.
Article in English | MEDLINE | ID: mdl-34733244

ABSTRACT

Antibiotic resistance is a global health threat, and there is ample motivation for development of novel antibacterial approaches combining multiple strategies. Electroporation is among the promising complementary techniques - highly optimizable, effective against a broad range of bacteria, and largely impervious to development of resistance. To date, most studies investigating electroporation as an efficacy potentiator for antibacterials used substances permissible in food industry, and only few used clinical antibiotics, as acceptable applications are largely limited to treatment of wastewaters inherently contaminated with such antibiotics. Moreover, most studies have focused mainly on maximal achievable effect, and less on underlying mechanisms. Here, we compare Escherichia coli inactivation potentiation rates for three antibiotics with different modes of action: ampicillin (inhibits cell wall synthesis), ciprofloxacin (inhibits DNA replication), and tetracycline (inhibits protein synthesis). We used concentrations for each antibiotic from 0 to 30× its minimum inhibitory concentration, a single 1-ms electric pulse with amplitude from 0 to 20 kV/cm, and post-pulse pre-dilution incubation either absent (≲1 min) or lasting 60 min, 160 min, or 24 h. Our data show that with incubation, potentiation is significant for all three antibiotics, increases consistently with pulse amplitude, and generally also with antibiotic concentration and incubation time. With incubation, potentiation for ampicillin was rather consistently (although with weak statistical significance) superior to both ciprofloxacin and tetracycline: ampicillin was superior to both in 42 of 48 data points, including 7 with significance with respect to both, while at 60- and 160-min incubation, it was superior in 31 of 32 data points, including 6 with significance with respect to both. This suggests that electroporation potentiates wall-targeting antibiotics more than those with intracellular targets, providing motivation for in-depth studies of the relationship between the mode of action of an antibiotic and its potentiation by electroporation. Identification of substances permissible in foods and targeting the cell wall of both Gram-negative and Gram-positive bacteria might provide candidate antibacterials for broad and strong potentiation by electroporation applicable also for food preservation.

5.
Front Bioeng Biotechnol ; 8: 543187, 2020.
Article in English | MEDLINE | ID: mdl-33015013

ABSTRACT

Growing diversity of protein-based technologies dictates further development of bio manufacturing to lower the cost of production and maximize yields. Intracellularly expressed recombinant proteins must be extracted from production host prior to purification. Use of electroporation to obtain proteins from bacteria and yeasts has been demonstrated in several studies for different modes of operation and formats. Here we tested various protocols for protein extraction from Escherichia coli by means of electroporation. The tested protocols were compared to established extraction methods of ultrasonication and glass-bead milling in terms of protein yields and content of impurities such as host cell DNA and endotoxins in the lysate. Protein extraction yield was maximal when exponentially growing bacteria were treated at 37°C, regardless of the electroporation mode of operation (batch or flow). We were unable to eliminate co-extraction of host DNA and endotoxins, but with 8 × 1 ms, 5 kV/cm, 1 Hz pulses they were minimized. Yields with optimized electroporation (up to 86 g protein/kg dry weight) were inferior to those in ultrasonication (up to 144 g protein/kg dry weight) and glass-bead milling (up to 280 g protein/kg dry weight). Nevertheless, electroporation largely avoids cell lysis and disintegration with which the extract is a mix of extracted proteins with debris of the bacterial envelope and bacterial DNA, which necessitates further purification.

6.
Article in English | MEDLINE | ID: mdl-32478057

ABSTRACT

Proteins extracted from microalgae for food, personal care products and cosmetics must be of high purity, requiring solvent-free extraction techniques despite their generally considerably lower protein yield and higher energy consumption. Here, three such approaches for green extraction of proteins from Chlorella vulgaris were evaluated: ultrasound, freeze-thawing, and electroporation; chemical lysis was used as positive control (maximal achievable extraction), and no extraction treatment as negative control. Compared to chemical lysis, electroporation yielded the highest fraction of extracted protein mass in the supernatant (≤27%), ultrasound ≤24%, and freeze-thawing ≤15%. After a growth lag of several days, electroporated groups of algal cells started to exhibit growth dynamics similar to the negative control group, while no growth regeneration was detected in groups exposed to ultrasound, freeze-thawing, or chemical lysis. For electroporation as the most efficient and the only non-destructive among the considered solvent-free protein extraction techniques, simultaneous extraction of intracellular algal lipids into supernatant was then investigated by HPLC, proving relatively low-yield (≤7% of the total algal lipid mass), yet feasible for glycerides (tri-, di-, and mono-) as well as other fatty acid derivatives. Our results show that electroporation, though lower in extraction yields than chemical lysis or mechanical disintegration, is in contrast to them a technique for largely debris-free extraction of proteins from microalgae, with no need for prior concentration or drying, with feasible growth regeneration, and with potential for simultaneous extraction of intracellular algal lipids into the supernatant.

7.
Annu Rev Biophys ; 48: 63-91, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30786231

ABSTRACT

Exposure of biological cells to high-voltage, short-duration electric pulses causes a transient increase in their plasma membrane permeability, allowing transmembrane transport of otherwise impermeant molecules. In recent years, large steps were made in the understanding of underlying events. Formation of aqueous pores in the lipid bilayer is now a widely recognized mechanism, but evidence is growing that changes to individual membrane lipids and proteins also contribute, substantiating the need for terminological distinction between electroporation and electropermeabilization. We first revisit experimental evidence for electrically induced membrane permeability, its correlation with transmembrane voltage, and continuum models of electropermeabilization that disregard the molecular-level structure and events. We then present insights from molecular-level modeling, particularly atomistic simulations that enhance understanding of pore formation, and evidence of chemical modifications of membrane lipids and functional modulation of membrane proteins affecting membrane permeability. Finally, we discuss the remaining challenges to our full understanding of electroporation and electropermeabilization.


Subject(s)
Cell Membrane/chemistry , Electroporation , Cell Membrane Permeability , Humans , Lipid Bilayers/chemistry , Membrane Lipids/chemistry
8.
Technol Cancer Res Treat ; 17: 1533033818790510, 2018 01 01.
Article in English | MEDLINE | ID: mdl-30089424

ABSTRACT

Electrochemotherapy and irreversible electroporation are gaining importance in clinical practice for the treatment of solid tumors. For successful treatment, it is extremely important that the coverage and exposure time of the treated tumor to the electric field are within the specified range. In order to ensure successful coverage of the entire target volume with sufficiently strong electric fields, numerical treatment planning has been proposed and its use has also been demonstrated in practice. Most of numerical models in treatment planning are based on charge conservation equation and are not able to provide time course of electric current, electrical conductivity, or electric field distribution changes established in the tissue during pulse delivery. Recently, a model based on inverse analysis of experimental data that delivers time course of tissue electroporation has been introduced. The aim of this study was to apply the previously reported time-dependent numerical model to a complex in vivo example of electroporation with different tissue types and with a long-term follow-up. The model, consisting of a tumor placed in the liver with 2 needle electrodes inserted in the center of the tumor and 4 around the tumor, was validated by comparison of measured and calculated time course of applied electric current. Results of simulations clearly indicated that proposed numerical model can successfully capture transient effects, such as evolution of electric current during each pulse, and effects of pulse frequency due to electroporation effects in the tissue. Additionally, the model can provide evolution of electric field amplitude and electrical conductivity in the tumor with consecutive pulse sequences.


Subject(s)
Neoplasms/pathology , Neoplasms/therapy , Electrochemotherapy/methods , Electrodes , Electroporation/methods , Female , Finite Element Analysis , Humans , Liver/pathology , Middle Aged , Models, Biological , Needles
9.
BMC Microbiol ; 16(1): 148, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27405351

ABSTRACT

BACKGROUND: In the context of spore contamination involved in bio-terrorism and food preservation, the development of new techniques for spore inactivation is an important challenge. RESULTS: Here, a successful application of electric arc discharges resulting in spore death was reported. Two types of electric arcs were compared, different with respect to their durations. The discharges with 0.5 µs duration induced a small inactivation area of 0.6 % of surface treated around their point of entry into the sample, while those with 20 µs duration induced a much larger inactivation area from 7 to 55 % of surface treated roughly proportional to the number of discharges delivered. In particular, 50 discharges of 20 µs duration induced inactivation in more than 55% of surface treated at an inactivation rate above 3.6 log10. CONCLUSIONS: These results are promising and warrant developing electric arcing as a novel method for spore inactivation.


Subject(s)
Bacillus pumilus/physiology , Spores, Bacterial/physiology , Colony Count, Microbial , Electricity , Microbial Viability , Water
10.
J Membr Biol ; 249(5): 623-631, 2016 10.
Article in English | MEDLINE | ID: mdl-27067073

ABSTRACT

Phylogenetic studies reveal that horizontal gene transfer (HGT) plays a prominent role in evolution and genetic variability of life. Five biotic mechanisms of HGT among prokaryotic organisms have been extensively characterized: conjugation, competence, transduction, gene transfer agent particles, and transitory fusion with recombination, but it is not known whether they can account for all natural HGT. It is even less clear how HGT could have occurred before any of these mechanisms had developed. Here, we consider contemporary conditions and experiments on microorganisms to estimate possible roles of abiotic HGT-currently and throughout evolution. Candidate mechanisms include freeze-and-thaw, microbeads-agitation, and electroporation-based transformation, and we posit that these laboratory techniques have analogues in nature acting as mechanisms of abiotic HGT: freeze-and-thaw cycles in polar waters, agitation by sand at foreshores and riverbeds, and lightning-triggered electroporation in near-surface aqueous habitats. We derive conservative order-of-magnitude estimates for rates of microorganisms subjected to freeze-and-thaw cycles, sand agitation, and lightning-triggered electroporation, at 1024, 1019, and 1017 per year, respectively. Considering the yield of viable transformants, which is by far the highest in electroporation, we argue this may still favor lightning-triggered transformation over the other two mechanisms. Electroporation-based gene transfer also appears to be the most general of these abiotic candidates, and perhaps even of all known HGT mechanisms. Future studies should provide improved estimates of gene transfer rates and cell viability, currently and in the past, but to assess the importance of abiotic HGT in nature will likely require substantial progress-also in knowledge of biotic HGT.


Subject(s)
Electroporation , Gene Transfer, Horizontal , Transformation, Genetic
11.
IEEE Trans Biomed Eng ; 62(10): 2535-43, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26389644

ABSTRACT

GOAL: We aimed to develop a system for controlled exposure of biological samples to conditions they experience when lightning strikes their habitats. METHODS: We based the generator on a capacitor charged via a bridge rectifier and a dc-dc converter, and discharged via a relay, delivering arcs similar to natural lightning strokes in electric current waveform and similarly accompanied by acoustic shock waves. We coupled the generator to our exposure chamber described previously, measured electrical and acoustic properties of arc discharges delivered, and assessed their ability to inactivate bacterial spores. RESULTS: Submicrosecond discharges descended vertically from the conical emitting electrode across the air gap, entering the sample centrally and dissipating radially toward the ring-shaped receiving electrode. In contrast, longer discharges tended to short-circuit the electrodes. Recording at 341 000 FPS with Vision Research Phantom v2010 camera revealed that initial arc descent was still vertical, but became accompanied by arcs leaning increasingly sideways; after 8-12 µs, as the first of these arcs formed direct contact with the receiving electrode, it evolved into a channel of plasmified air and short-circuited the electrodes. We eliminated this artefact by incorporating an insulating cylinder concentrically between the electrodes, precluding short-circuiting between them. While bacterial spores are highly resistant to electric pulses delivered through direct contact, we showed that with arc discharges accompanied by an acoustic shock wave, spore inactivation is readily obtained. CONCLUSION: The presented system allows scientific investigation of effects of arc discharges on biological samples. SIGNIFICANCE: This system will allow realistic experimental studies of lightning-triggered horizontal gene transfer and assessment of its role in evolution.


Subject(s)
Gene Transfer, Horizontal/radiation effects , Lightning , Models, Theoretical , Research/instrumentation , Spores, Bacterial/radiation effects , Bacillus/radiation effects , Electricity , Equipment Design , Sound
12.
Trends Biotechnol ; 33(8): 480-8, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26116227

ABSTRACT

Electroporation is already an established technique in several areas of medicine, but many of its biotechnological applications have only started to emerge; we review here some of the most promising. We outline electroporation as a phenomenon and then proceed to applications, first outlining the best established - the use of reversible electroporation for heritable genetic modification of microorganisms (electrotransformation), and then explore recent advances in applying electroporation for inactivation of microorganisms, extraction of biomolecules, and fast drying of biomass. Although these applications often aim to upscale to the industrial and/or clinical level, we also outline some important chip-scale applications of electroporation. We conclude our review with a discussion of the main challenges and future perspectives.


Subject(s)
Biotechnology , Electroporation
13.
Annu Rev Biomed Eng ; 16: 295-320, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-24905876

ABSTRACT

When high-amplitude, short-duration pulsed electric fields are applied to cells and tissues, the permeability of the cell membranes and tissue is increased. This increase in permeability is currently explained by the temporary appearance of aqueous pores within the cell membrane, a phenomenon termed electroporation. During the past four decades, advances in fundamental and experimental electroporation research have allowed for the translation of electroporation-based technologies to the clinic. In this review, we describe the theory and current applications of electroporation in medicine and then discuss current challenges in electroporation research and barriers to a more extensive spread of these clinical applications.


Subject(s)
Biomedical Engineering/methods , Electroporation/methods , Neoplasms/therapy , Administration, Cutaneous , Animals , Cell Membrane/physiology , Cell Membrane Permeability , Drug Delivery Systems , Electric Impedance , Electrochemotherapy , Electromagnetic Fields , Humans , Neoplasm Metastasis , Permeability , Positron-Emission Tomography , RNA, Small Interfering/metabolism , Thermodynamics , Tissue Engineering/methods , Tomography, X-Ray Computed , Ultrasonography
14.
Bioelectromagnetics ; 35(3): 222-6, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24203794

ABSTRACT

Published data on occupational exposure to induction heating equipment are scarce, particularly in terms of induced quantities in the human body. This article provides some additional information by investigating exposure to two such machines-an induction furnace and an induction hardening machine. Additionally, a spatial averaging algorithm for measured fields we developed in a previous publication is tested on new data. The human model was positioned at distances where measured values of magnetic flux density were above the reference levels. All human exposure was below the basic restriction-the lower bound of the 0.1 top percentile induced electric field in the body of a worker was 0.193 V/m at 30 cm from the induction furnace.


Subject(s)
Algorithms , Electromagnetic Fields , Heating/instrumentation , Models, Biological , Occupational Exposure , Adult , Humans , Male
15.
Bioelectrochemistry ; 94: 79-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24076535

ABSTRACT

Electrostatic discharges occur naturally as lightning strokes, and artificially in light sources and in materials processing. When an electrostatic discharge interacts with living matter, the basic physical effects can be accompanied by biophysical and biochemical phenomena, including cell excitation, electroporation, and electrofusion. To study these phenomena, we developed an experimental system that provides easy sample insertion and removal, protection from airborne particles, observability during the experiment, accurate discharge origin positioning, discharge delivery into the sample either through an electric arc with adjustable air gap width or through direct contact, and reliable electrical insulation where required. We tested the system by assessing irreversible electroporation of Escherichia coli bacteria (15 mm discharge arc, 100 A peak current, 0.1 µs zero-to-peak time, 0.2 µs peak-to-halving time), and gene electrotransfer into CHO cells (7 mm discharge arc, 14 A peak current, 0.5 µs zero-to-peak time, 1.0 µs peak-to-halving time). Exposures to natural lightning stroke can also be studied with this system, as due to radial current dissipation, the conditions achieved by a stroke at a particular distance from its entry are also achieved by an artificial discharge with electric current downscaled in magnitude, but similar in time course, correspondingly closer to its entry.


Subject(s)
Electroporation , Escherichia coli , Static Electricity , Animals , CHO Cells , Cricetinae , Cricetulus , Electricity , Mice
17.
Phys Life Rev ; 10(3): 351-70, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23787374

ABSTRACT

Phylogenetic studies show that horizontal gene transfer (HGT) is a significant contributor to genetic variability of prokaryotes, and was perhaps even more abundant during the early evolution. Hitherto, research of natural HGT has mainly focused on three mechanisms of DNA transfer: conjugation, natural competence, and viral transduction. This paper discusses the feasibility of a fourth such mechanism--cell electroporation and/or electrofusion triggered by atmospheric electrostatic discharges (lightnings). A description of electroporation as a phenomenon is followed by a review of experimental evidence that electroporation of prokaryotes in aqueous environments can result in release of non-denatured DNA, as well as uptake of DNA from the surroundings and transformation. Similarly, a description of electrofusion is followed by a review of experiments showing that prokaryotes devoid of cell wall can electrofuse into hybrids expressing the genes of their both precursors. Under sufficiently fine-tuned conditions, electroporation and electrofusion are efficient tools for artificial transformation and hybridization, respectively, but the quantitative analysis developed here shows that conditions for electroporation-based DNA release, DNA uptake and transformation, as well as for electrofusion are also present in many natural aqueous environments exposed to lightnings. Electroporation is thus a plausible contributor to natural HGT among prokaryotes, and could have been particularly important during the early evolution, when the other mechanisms might have been scarcer or nonexistent. In modern prokaryotes, natural absence of the cell wall is rare, but it is reasonable to assume that the wall has formed during a certain stage of evolution, and at least prior to this, electrofusion could also have contributed to natural HGT. The concluding section outlines several guidelines for assessment of the feasibility of lightning-triggered HGT.


Subject(s)
Electroporation , Evolution, Molecular , Gene Transfer, Horizontal , Lightning , Animals , Humans
18.
BMC Med Educ ; 12: 102, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23107609

ABSTRACT

BACKGROUND: Electrochemotherapy is a local treatment that utilizes electric pulses in order to achieve local increase in cytotoxicity of some anticancer drugs. The success of this treatment is highly dependent on parameters such as tissue electrical properties, applied voltages and spatial relations in placement of electrodes that are used to establish a cell-permeabilizing electric field in target tissue. Non-thermal irreversible electroporation techniques for ablation of tissue depend similarly on these parameters. In the treatment planning stage, if oversimplified approximations for evaluation of electric field are used, such as U/d (voltage-to-distance ratio), sufficient field strength may not be reached within the entire target (tumor) area, potentially resulting in treatment failure. RESULTS: In order to provide an aid in education of medical personnel performing electrochemotherapy and non-thermal irreversible electroporation for tissue ablation, assist in visualizing the electric field in needle electrode electroporation and the effects of changes in electrode placement, an application has been developed both as a desktop- and a web-based solution. It enables users to position up to twelve electrodes in a plane of adjustable dimensions representing a two-dimensional slice of tissue. By means of manipulation of electrode placement, i.e. repositioning, and the changes in electrical parameters, the users interact with the system and observe the resulting electrical field strength established by the inserted electrodes in real time. The field strength is calculated and visualized online and instantaneously reflects the desired changes, dramatically improving the user friendliness and educational value, especially compared to approaches utilizing general-purpose numerical modeling software, such as finite element modeling packages. CONCLUSION: In this paper we outline the need and offer a solution in medical education in the field of electroporation-based treatments, e.g. primarily electrochemotherapy and non-thermal irreversible tissue ablation. We present the background, the means of implementation and the fully functional application, which is the first of its kind. While the initial feedback from students that have evaluated this application as part of an e-learning course is positive, a formal study is planned to thoroughly evaluate the current version and identify possible future improvements and modifications.


Subject(s)
Drug Therapy, Computer-Assisted/instrumentation , Drug Therapy, Computer-Assisted/methods , Education, Medical , Electrochemotherapy/instrumentation , Electrochemotherapy/methods , Electrodes , Electromagnetic Fields , Electroporation/instrumentation , Electroporation/methods , Skin Neoplasms/drug therapy , Software , Curriculum , Data Display , Electric Conductivity , Equipment Design , Humans , Mathematics , Static Electricity
19.
Electrophoresis ; 33(18): 2867-74, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23019104

ABSTRACT

We describe the development and testing of a setup that allows for DEP field-flow fractionation (DEP-FFF) of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells based on their different polarizabilities. We first optimized the channel and electrode dimensions, flow rate, and electric field parameters for efficient DEP-FFF separation of moderately heat-treated CHO cells (50°C for 15 min) from untreated ones, with the former used as a uniform and stable model of electroporated cells. We then used CHO cells exposed to electric field pulses with amplitudes from 1200 to 2800 V/cm, yielding six groups containing various fractions of nonporated, reversibly porated, and irreversibly porated cells, testing their fractionation in the chamber. DEP-FFF at 65 kHz resulted in distinctive flow rates for nonporated and each of the porated cell groups. At lower frequencies, the efficiency of fractionation deteriorated, while at higher frequencies the separation of individual elution profiles was further improved, but at the cost of cell flow rate slowdown in all the cell groups, implying undesired transition from negative into positive DEP, where the cells are pulled toward the electrodes. Our results demonstrate that fractionation of irreversibly electroporated, reversibly electroporated, and nonelectroporated cells is feasible at a properly selected frequency.


Subject(s)
Cell Separation/methods , Electroporation/methods , Fractionation, Field Flow/methods , Microfluidic Analytical Techniques/methods , Animals , CHO Cells , Cricetinae , Cricetulus
20.
Phys Med Biol ; 57(19): 5943-53, 2012 Oct 07.
Article in English | MEDLINE | ID: mdl-22964714

ABSTRACT

Induction heating equipment is a source of strong and nonhomogeneous magnetic fields, which can exceed occupational reference levels. We investigated a case of an induction tempering tunnel furnace. Measurements of the emitted magnetic flux density (B) were performed during its operation and used to validate a numerical model of the furnace. This model was used to compute the values of B and the induced in situ electric field (E) for 15 different body positions relative to the source. For each body position, the computed B values were used to determine their maximum and average values, using six spatial averaging schemes (9-285 averaging points) and two averaging algorithms (arithmetic mean and quadratic mean). Maximum and average B values were compared to the ICNIRP reference level, and E values to the ICNIRP basic restriction. Our results show that in nonhomogeneous fields, the maximum B is an overly conservative predictor of overexposure, as it yields many false positives. The average B yielded fewer false positives, but as the number of averaging points increased, false negatives emerged. The most reliable averaging schemes were obtained for averaging over the torso with quadratic averaging, with no false negatives even for the maximum number of averaging points investigated.


Subject(s)
Heating/instrumentation , Magnetic Fields/adverse effects , Models, Anatomic , Occupational Exposure/analysis , Guideline Adherence , Humans , Occupational Exposure/adverse effects , Occupational Exposure/legislation & jurisprudence
SELECTION OF CITATIONS
SEARCH DETAIL
...