Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Acta Naturae ; 14(1): 4-13, 2022.
Article in English | MEDLINE | ID: mdl-35441048

ABSTRACT

Protonophores are compounds capable of electrogenic transport of protons across membranes. Protonophores have been intensively studied over the past 50 years owing to their ability to uncouple oxidation and phosphorylation in mitochondria and chloroplasts. The action mechanism of classical uncouplers, such as DNP and CCCP, in mitochondria is believed to be related to their protonophoric activity; i.e., their ability to transfer protons across the lipid part of the mitochondrial membrane. Given the recently revealed deviations in the correlation between the protonophoric activity of some uncouplers and their ability to stimulate mitochondrial respiration, this review addresses the involvement of some proteins of the inner mitochondrial membrane, such as the ATP/ADP antiporter, dicarboxylate carrier, and ATPase, in the uncoupling process. However, these deviations do not contradict the Mitchell theory but point to a more complex nature of the interaction of DNP, CCCP, and other uncouplers with mitochondrial membranes. Therefore, a detailed investigation of the action mechanism of uncouplers is required for a more successful pharmacological use, including their antibacterial, antiviral, anticancer, as well as cardio-, neuro-, and nephroprotective effects.

2.
J Photochem Photobiol B ; 229: 112425, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35276579

ABSTRACT

Lipid peroxidation (LPO) plays a key role in many age-related neurodegenerative conditions and other disorders. Light irradiation can initiate LPO through various mechanisms and is of importance in retinal and dermatological pathologies. The introduction of deuterated polyunsaturated fatty acids (D-PUFA) into membrane lipids is a promising approach for protection against LPO. Here, we report the protective effects of D-PUFA against the photodynamically induced LPO, using illumination in the presence of the photosensitizer trisulfonated aluminum phthalocyanine (AlPcS3) in liposomes and giant unilamellar vesicles (GUV), as assessed in four experimental models: 1) sulforhodamine B leakage from liposomes, detected with fluorescence correlation spectroscopy (FCS); 2) formation of diene conjugates in liposomal membranes, measured by absorbance at 234 nm; 3) membrane leakage in GUV assessed by optical phase-contrast intensity observations; 4) UPLC-MS/MS method to detect oxidized linoleic acid (Lin)-derived metabolites. Specifically, in liposomes or GUV containing H-PUFA (dilinoleyl-sn-glycero-3-phosphatidylcholine), light irradiation led to an extensive oxidative damage to bilayers. By contrast, no damage was observed in lipid bilayers containing 20% or more D-PUFA (D2-Lin or D10-docosahexanenoic acid). Remarkably, addition of tocopherol increased the dye leakage from liposomes in H-PUFA bilayers compared to photoirradiation alone, signifying tocopherol's pro-oxidant properties. However, in the presence of D-PUFA the opposite effect was observed, whereby adding tocopherol increased the resistance to LPO. These findings suggest a method to augment the protective effects of D-PUFA, which are currently undergoing clinical trials in several neurological and retinal diseases that involve LPO.


Subject(s)
Lipid Bilayers , Tandem Mass Spectrometry , Chromatography, Liquid , Fatty Acids , Fatty Acids, Unsaturated/pharmacology , Lipid Peroxidation , Liposomes
3.
Biochemistry (Mosc) ; 85(12): 1578-1590, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33705296

ABSTRACT

Appending lipophilic cations to small molecules has been widely used to produce mitochondria-targeted compounds with specific activities. In this work, we obtained a series of derivatives of the well-known fluorescent dye 7-nitrobenzo-2-oxa-1,3-diazole (NBD). According to the previous data [Denisov et al. (2014) Bioelectrochemistry, 98, 30-38], alkyl derivatives of NBD can uncouple isolated mitochondria at concentration of tens of micromoles despite a high pKa value (~11) of the dissociating group. Here, a number of triphenylphosphonium (TPP) derivatives linked to NBD via hydrocarbon spacers of varying length (C5, C8, C10, and C12) were synthesized (mitoNBD analogues), which accumulated in the mitochondria in an energy-dependent manner. NBD-C10-TPP (C10-mitoNBD) acted as a protonophore in artificial lipid membranes (liposomes) and uncoupled isolated mitochondria at micromolar concentrations, while the derivative with a shorter linker (NBD-C5-TPP, or C5-mitoNBD) exhibited no such activities. In accordance with this data, C10-mitoNBD was significantly more efficient than C5-mitoNBD in suppressing the growth of Bacillus subtilis. C10-mitoNBD and C12-mitoNBD demonstrated the highest antibacterial activity among the investigated analogues. C10-mitoNBD also exhibited the neuroprotective effect in the rat model of traumatic brain injury.


Subject(s)
Anti-Bacterial Agents/pharmacology , Brain Injuries/prevention & control , Mitochondria, Liver/drug effects , Neuroprotective Agents/pharmacology , Nitrobenzenes/pharmacology , Organophosphorus Compounds/pharmacology , Oxadiazoles/pharmacology , Animals , Bacillus subtilis/drug effects , Disease Models, Animal , Energy Metabolism , Mitochondria, Liver/metabolism , Nitrobenzenes/chemistry , Organophosphorus Compounds/chemistry , Oxadiazoles/chemistry , Rats , Thermogenesis
4.
Biochemistry (Mosc) ; 84(10): 1151-1165, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31694511

ABSTRACT

Uncouplers of oxidative phosphorylation in mitochondria, which have been essential in elucidating the basic principles of cell bioenergetics, have recently attracted a considerable interest as compounds with therapeutic, e.g., neuroprotective, properties. Here, we report the effect of mitofluorescein (mitoFluo), a new protonophoric uncoupler representing a conjugate of fluorescein with decyl(triphenyl)phosphonium, on the electrical activity of neurons from Lymnaea stagnalis. Incubation with mitoFluo in the dark led to a decrease in the absolute value of the resting membrane potential of the neurons and alterations in their spike activity, such as spike broadening, spike amplitude reduction, and increase in the spike frequency. Prolonged incubation at high (tens micromoles) mitoFluo concentrations resulted in complete suppression of neuronal electrical activity. The effect of mitoFluo on the neurons was qualitatively similar to that of the classical mitochondrial uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP) but manifested itself after much longer incubation and at higher concentrations. The distinctive feature of mitoFluo is its light-induced effect on the electrical activity of neurons. Changes in the parameters of the neuronal activity upon illumination in the presence of mitoFluo were similar to the light-induced effects of the well-known photosensitizer Rose Bengal, although less pronounced. It was suggested that the effects of mitoFluo on the electrical activity of neurons, both as a mitochondrial uncoupler and a photosensitizer, are mediated by the changes in the cytoplasmic calcium concentration.


Subject(s)
Electric Stimulation , Fluorescein/pharmacology , Fluorescent Dyes/pharmacology , Neurons/drug effects , Photochemotherapy , Protons , Animals , Fluorescein/chemistry , Fluorescent Dyes/chemistry , Neurons/metabolism , Ponds , Snails
5.
Acta Naturae ; 11(4): 93-98, 2019.
Article in English | MEDLINE | ID: mdl-31993240

ABSTRACT

SkQ1, a novel antibiotic targeting bacterial bioenergetics, is highly effective against both gram-positive and gram-negative bacteria. However, some gram-negative bacteria, such as Escherichia coli and Klebsiella pneumoniae, are highly resistant to it. In different gram-negative bacteria, this resistance is associated with the identity of their AcrB transporter protein sequence with the sequence of the AcrB protein from E. coli. SkQ1 is expelled from E. coli cells by the AcrAB-TolC multidrug efflux pump. In this study, we demonstrate that SkQ1 resistance in E. coli, in contrast to chloramphenicol resistance, does not depend on the presence of the multidrug efflux pump accessory protein AcrZ.

6.
Biochemistry (Mosc) ; 82(10): 1140-1146, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29037134

ABSTRACT

In this work, it was found that the ability of common uncouplers - carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and 2,4-dinitrophenol (DNP) - to reduce membrane potential of isolated rat liver mitochondria was diminished in the presence of millimolar concentrations of the known cytochrome c oxidase inhibitor - cyanide. In the experiments, mitochondria were energized by addition of ATP in the presence of rotenone, inhibiting oxidation of endogenous substrates via respiratory complex I. Cyanide also reduced the uncoupling effect of FCCP and DNP on mitochondria energized by succinate in the presence of ferricyanide. Importantly, cyanide did not alter the protonophoric activity of FCCP and DNP in artificial bilayer lipid membranes. The causes of the effect of cyanide on the efficiency of protonophoric uncouplers in mitochondria are considered in the framework of the suggestion that conformational changes of membrane proteins could affect the state of lipids in their vicinity. In particular, changes in local microviscosity and vacuum permittivity could change the efficiency of protonophore-mediated translocation.


Subject(s)
Carbonyl Cyanide m-Chlorophenyl Hydrazone/analogs & derivatives , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/drug effects , Uncoupling Agents/pharmacology , 2,4-Dinitrophenol/pharmacology , Adenosine Triphosphate/pharmacology , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Mitochondria, Liver/metabolism , Mitochondrial Membranes/drug effects , Potassium Cyanide/pharmacology , Rats , Rotenone/pharmacology
7.
Biochemistry (Mosc) ; 80(6): 745-51, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26531019

ABSTRACT

The impact of double bonds in fatty acyl tails of unsaturated lipids on the photodynamic inactivation of ion channels formed by the pentadecapeptide gramicidin A in a planar bilayer lipid membrane was studied. The presence of unsaturated acyl tails protected gramicidin A against photodynamic inactivation, with efficacy depending on the depth of a photosensitizer in the membrane. The protective effect of double bonds was maximal with membrane-embedded chlorin e6-monoethylenediamine monoamide dimethyl ester, and minimal - in the case of water-soluble tri-sulfonated aluminum phthalocyanine (AlPcS3) known to reside at the membrane surface. By contrast, the protective effect of the hydrophilic singlet oxygen scavenger ascorbate was maximal for AlPcS3 and minimal for amide of chlorin e6 dimethyl ester. The depth of photosensitizer position in the lipid bilayer was estimated from the quenching of photosensitizer fluorescence by iodide. Thus, the protective effect of a singlet oxygen scavenger against photodynamic inactivation of the membrane-inserted peptide is enhanced upon location of the photosensitizer and scavenger molecules in close vicinity to each other.


Subject(s)
Gramicidin/chemistry , Ion Channels/chemistry , Lipid Bilayers/chemistry , Photosensitizing Agents/pharmacology , Ascorbic Acid/pharmacology , Gramicidin/metabolism , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Ion Channels/metabolism , Lipid Bilayers/metabolism , Organometallic Compounds/chemistry , Photochemistry , Porphyrins/chemistry , Porphyrins/metabolism , Singlet Oxygen/chemistry , Singlet Oxygen/metabolism
8.
Biochemistry (Mosc) ; 76(5): 497-516, 2011 May.
Article in English | MEDLINE | ID: mdl-21639831

ABSTRACT

This review describes the method of fluorescence correlation spectroscopy (FCS) and its applications. FCS is used for investigating processes associated with changes in the mobility of molecules and complexes and allows researchers to study aggregation of particles, binding of fluorescent molecules with supramolecular complexes, lipid vesicles, etc. The size of objects under study varies from a few angstroms for dye molecules to hundreds of nanometers for nanoparticles. The described applications of FCS comprise various fields from simple chemical systems of solution/micelle to sophisticated regulations on the level of living cells. Both the methodical bases and the theoretical principles of FCS are simple and available. The present review is concentrated preferentially on FCS applications for studies on artificial and natural membranes. At present, in contrast to the related approach of dynamic light scattering, FCS is poorly known in Russia, although it is widely employed in laboratories of other countries. The goal of this review is to promote the development of FCS in Russia so that this technique could occupy the position it deserves in modern Russian science.


Subject(s)
Biology/instrumentation , Chemistry/instrumentation , Medicine/instrumentation , Spectrometry, Fluorescence/methods , Animals , Biology/methods , Chemistry/methods , Humans , Medicine/methods , Russia , Spectrometry, Fluorescence/instrumentation
9.
Biochemistry (Mosc) ; 75(6): 728-33, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20636264

ABSTRACT

The addition of the channel-forming domain of colicin E1 to liposomes elicited the transmembrane diffusion (flip-flop) of lipids concomitant to the release of the fluorescent dye from liposomes. Good correlation was found between kinetic and concentration dependences of the two processes. Both the liposome leakage and the lipid flip-flop were stimulated upon alkalinization of the buffer solution after colicin binding at acidic pH. These results in combination with the analysis of the data on colicin binding to liposomes provide evidence in favor of the validity of the toroidal (proteolipidic) pore model as the mechanism of colicin channel formation.


Subject(s)
Colicins/metabolism , Lipids/chemistry , Liposomes/metabolism , Diffusion , Fluorescent Dyes/metabolism , Hydrogen-Ion Concentration , Kinetics , Protein Binding , Spectrometry, Fluorescence
10.
Biochemistry (Mosc) ; 74(12): 1305-14, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19961410

ABSTRACT

The effect of ionic substituents in zinc and aluminum phthalocyanine molecules and of membrane surface charge on the interaction of dyes with artificial membranes and enterobacterial cells, as well as on photosensitization efficiency was studied. It has been shown that increasing the number of positively charged substituents enhances the extent of phthalocyanine binding to Escherichia coli cells. This, along with the high quantum yield of singlet oxygen generation, determines efficient photodynamic inactivation of Gram-negative bacteria by zinc and aluminum octacationic phthalocyanines. The effect of Ca2+ and Mg2+ cations and pH on photodynamic inactivation of enterobacteria in the presence of octacationic zinc phthalocyanine has been studied. It has been shown that effects resulting in lowering negative charge on outer membrane protect bacteria against photoinactivation, which confirms the crucial role in this process of the electrostatic interaction of the photosensitizer with the cell wall. Electrostatic nature of binding is consistent with mainly electrostatic character of dye interactions with artificial membranes of different composition. Lower sensitivity of Proteus mirabilis to photodynamic inactivation, compared to that of E. coli and Salmonella enteritidis, due to low affinity of the cationic dye to the cells of this species, was found.


Subject(s)
Enterobacteriaceae/drug effects , Indoles/chemistry , Photosensitizing Agents/chemistry , Cations/chemistry , Enterobacteriaceae/metabolism , Escherichia coli/drug effects , Escherichia coli/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , Hydrogen-Ion Concentration , Indoles/pharmacology , Isoindoles , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Singlet Oxygen/metabolism , Static Electricity , Zinc Compounds
11.
Biochemistry (Mosc) ; 74(9): 1021-6, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19916913

ABSTRACT

A study of the properties of water-soluble tetrasubstituted cationic aluminum phthalocyanine (AlPcN(4)) revealed efficient binding of this photosensitizer to phospholipid membranes as compared with tetrasulfonated aluminum and zinc phthalocyanine complexes. This also manifested itself in enhanced photodynamic activity of AlPcN(4) as measured by the photosensitized damage of gramicidin channels in a planar bilayer lipid membrane. The largest difference in the photodynamic activity of cationic and anionic phthalocyanines was observed in a membrane containing negatively charged lipids, thereby pointing to significant contribution of electrostatic interactions to the binding of photosensitizers to a membrane. Fluoride anions suppressed the photodynamic activity and binding to membrane of both tetraanionic and tetracationic aluminum phthalocyanines, which supports our hypothesis that interaction of charged metallophthalocyanines with phospholipid membranes is mostly determined by coordination of the central metal atom with the phosphate group of lipid.


Subject(s)
Indoles/chemistry , Membranes, Artificial , Organometallic Compounds/chemistry , Cations , Electrophoretic Mobility Shift Assay , Kinetics , Lipid Bilayers , Photosensitizing Agents/chemistry , Spectrometry, Fluorescence
12.
J Membr Biol ; 222(3): 141-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18493812

ABSTRACT

The antioxidant activity of mitochondria-targeted small molecules, SkQ1 and MitoQ (conjugates of a lipophilic decyltriphenylphosphonium cation with an antioxidant moiety of a plastoquinone and ubiquinone, respectively), was studied in aqueous solution and in a lipid environment, i.e., micelles, liposomes and planar bilayer lipid membranes. Reactive oxygen species (ROS) were generated by azo initiators or ferrous ions with or without tert-butyl-hydroperoxide (t-BOOH). Chemiluminescence, fluorescence, oxygen consumption and inactivation of gramicidin peptide channels were measured to detect antioxidant activity. In all of the systems studied, SkQ1 was shown to effectively scavenge ROS. The scavenging was inherent to the reduced form of the quinone (SkQ1H(2)). In the majority of the above model systems, SkQ1 exhibited higher antioxidant activity than MitoQ. It is concluded that SkQ1H(2) operates as a ROS scavenger in both aqueous and lipid environments, being effective at preventing ROS-induced damage to membrane lipids as well as membrane-embedded peptides.


Subject(s)
Antioxidants/pharmacology , Free Radical Scavengers/pharmacology , Mitochondrial Membranes/drug effects , Onium Compounds/pharmacology , Plastoquinone/analogs & derivatives , Water/metabolism , Antioxidants/chemistry , Cations , Drug Delivery Systems , Free Radical Scavengers/chemistry , Gramicidin/antagonists & inhibitors , Gramicidin/pharmacology , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Liposomes , Micelles , Mitochondrial Membranes/chemistry , Models, Biological , Onium Compounds/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/metabolism , Plastoquinone/chemistry , Plastoquinone/pharmacology , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/toxicity , Ubiquinone/analogs & derivatives , Ubiquinone/chemistry , Ubiquinone/pharmacology , Water/chemistry
13.
Biochim Biophys Acta ; 1778(2): 541-8, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18035042

ABSTRACT

Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN(4)) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN(4) appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS(4)), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN(4). The inhibitory effect of fluoride ions on the membrane binding of both AlPcN(4) and AlPcS(4) supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN(4) and AlPcS(4) in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN(4) and AlPcS(4) as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN(4) with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN(4) fluorescence quenching.


Subject(s)
Indoles/metabolism , Lipid Bilayers , Phospholipids/metabolism , Cetrimonium , Cetrimonium Compounds/chemistry , Isoindoles , Static Electricity
14.
Bioorg Khim ; 33(5): 511-9, 2007.
Article in Russian | MEDLINE | ID: mdl-18050656

ABSTRACT

The channel-forming activity of gramicidin A derivatives carrying positively charged amino acid sequences at their C-termini was studied on planar bilayer lipid membranes and liposomes. We showed previously that, at low concentrations, these peptides form classical cation-selective pores typical of gramicidin A, whereas, at high concentrations, they form large nonselective pores. The ability of the peptides to form nonselective pores, which was determined by the efflux of carboxyfluorescein, an organic dye, from liposomes, decreased substantially as the length of the gramicidin fragment in the series of cationic analogues was truncated. CD spectra showed that large pores are formed by peptides having both beta6.3 single-stranded and beta5.6 double-stranded helical conformations of the gramicidin fragment, with the C-terminal cationic sequence being extended. The dimerization of the peptides by the oxidation of the terminal cysteine promoted the formation of nonselective pores. It was shown that nonselective pores are not formed in membranes of erythrocytes, which may indicate a dependence of the channel-forming ability on the membrane type. The results may be of interest for the directed synthesis of peptides with antibacterial activity.


Subject(s)
Anti-Bacterial Agents/chemistry , Gramicidin/analogs & derivatives , Gramicidin/chemistry , Ion Channels/chemistry , Lipid Bilayers/chemistry , Amino Acid Sequence , Dimerization , Erythrocyte Membrane/chemistry , Gramicidin/chemical synthesis , Humans , Liposomes/chemistry , Peptides/chemical synthesis , Peptides/chemistry , Porosity
15.
Biochemistry (Mosc) ; 71(1): 99-103, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16457626

ABSTRACT

Based on the model of a toroidal protein-lipid pore, the effect of calcium ions on colicin E1 channel was predicted. In electrophysiological experiments Ca2+ suppressed the activity of colicin E1 channels in membranes formed of diphytanoylphosphatidylglycerol, whereas no desorption of the protein occurred from the membrane surface. The effect of Ca2+ was not observed on membranes formed of diphytanoylphosphatidylcholine. Single-channel measurements revealed that Ca2+-induced reduction of the colicin-induced current across the negatively charged membrane was due to a decrease in the number of open colicin channels and not changes in their properties. In line with the toroidal model, the effect of Ca2+ on the colicin E1 channel-forming activity is explained by alteration of the membrane lipid curvature caused by electrostatic interaction of Ca2+ with negatively charged lipid head groups.


Subject(s)
Calcium/metabolism , Colicins/metabolism , Ion Channels/metabolism , Electric Conductivity , Lipid Bilayers/metabolism , Lipid Metabolism , Lipids/chemistry
17.
J Membr Biol ; 199(1): 51-62, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15366423

ABSTRACT

Chemical modification and photodynamic treatment of the colicin E1 channel-forming domain (P178) in vesicular and planar bilayer lipid membranes (BLMs) was used to elucidate the role of tryptophan residues in colicin E1 channel activity. Modification of colicin tryptophan residues by N-bromosuccinimide (NBS), as judged by the loss of tryptophan fluorescence, resulted in complete suppression of wild-type P178 channel activity in BLMs formed from fully saturated (diphytanoyl) phospholipids, both at the macroscopic-current and single-channel levels. The similar effect on both the tryptophan fluorescence and the electric current across BLM was observed also after NBS treatment of gramicidin channels. Of the single-tryptophan P178 mutants studied, W460 showed the highest sensitivity to NBS treatment, pointing to the importance of the water-exposed Trp460 in colicin channel activity. In line with previous work, the photodynamic treatment (illumination with visible light in the presence of a photosensitizer) led to suppression of P178 channel activity in diphytanoyl-phospholipid membranes concomitant with the damage to tryptophan residues detected here by a decrease in tryptophan fluorescence. The present work revealed novel effects: activation of P178 channels as a result of both NBS and photodynamic treatments was observed with BLMs formed from unsaturated (dioleoyl) phospholipids. These phenomena are ascribed to the effect of oxidative modification of double-bond-containing lipids on P178 channel formation. The pronounced stimulation of the colicin-mediated ionic current observed after both pretreatment with NBS and sensitized photomodification of the BLMs support the idea that distortion of membrane structure can facilitate channel formation.


Subject(s)
Colicins/metabolism , Gramicidin/metabolism , Ion Channels/physiology , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Bromosuccinimide/pharmacology , Ion Channels/drug effects , Mutation/genetics , Oxidation-Reduction/drug effects , Tryptophan/metabolism
18.
Biochemistry ; 43(15): 4575-82, 2004 Apr 20.
Article in English | MEDLINE | ID: mdl-15078104

ABSTRACT

The pentadecapeptide gramicidin A, which is known to form highly conductive ion channels in a bilayer lipid membrane by assembling as transmembrane head-to-head dimers, can be modified by attaching a biotin group to its C-terminus through an aminocaproyl spacer. Such biotinylated gramicidin A analogues also form ion channels in a hydrophobic lipid bilayer, exposing the biotin group to the aqueous bathing solution. Interaction of the biotinylated gramicidin channels with (strept)avidin has previously been shown to result in the appearance of a long-lasting open state with a doubled transition amplitude in single-channel traces and a deceleration of the macroscopic current kinetics as studied by the sensitized photoinactivation method. Here this interaction was studied further by using streptavidin mutants with weakened biotin binding affinities. The Stv-F120 mutant, having a substantially reduced biotin binding affinity, exhibited an efficacy similar to that of natural streptavidin in inducing both double-conductance channel formation and deceleration of the photoinactivation kinetics of the biotinylated gramicidin having a long linker arm. The Stv-A23D27 mutant with a severely weakened biotin binding affinity was ineffective in eliciting the double-conductance channels, but decelerated noticeably the photoinactivation kinetics of the long linker biotinylated gramicidin. However, the marked difference in the effects of the mutant and natural streptavidins was smaller than expected on the basis of the substantially reduced biotin binding affinity of the Stv-A23D27 mutant. This may suggest direct interaction of this mutant streptavidin with a lipid membrane in the process of its binding to biotinylated gramicidin channels. The role of linker arm length in the interaction of biotinylated gramicidins with streptavidin was revealed in experiments with a short linker gramicidin. This gramicidin analogue appeared to be unable to form double-conductance channels, though several lines of evidence were indicative of its binding by streptavidin. The data obtained show the conditions under which the interaction of streptavidin with biotinylated gramicidin leads to the formation of the double-conductance tandem channels composed of two cross-linked transmembrane dimers.


Subject(s)
Biotin/chemistry , Biotin/metabolism , Gramicidin/chemistry , Gramicidin/metabolism , Ion Channels/chemistry , Ion Channels/metabolism , Streptavidin/chemistry , Streptavidin/metabolism , Binding Sites , Biotinylation , Electric Conductivity , Gramicidin/antagonists & inhibitors , Ion Channels/antagonists & inhibitors , Kinetics , Ligands , Lipid Bilayers/chemistry , Models, Chemical , Mutation , Patch-Clamp Techniques , Photolysis , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/chemistry , Streptavidin/genetics , Surface Properties
19.
Biochemistry (Mosc) ; 69(2): 220-7, 2004 Feb.
Article in English | MEDLINE | ID: mdl-15000691

ABSTRACT

Biotin-avidin (or streptavidin) high affinity binding has been widely applied as a universal tool for basic research as well as diagnostic and therapeutic purposes. Here we studied the interaction of streptavidin with ionic channels formed by biotinylated gramicidin in planar bilayer lipid membranes (BLM) using the method of sensitized photoinactivation. As shown previously, the addition of streptavidin leads to a profound increase in the lifetime (tau) of gA5XB, a biotinylated analog of gramicidin A with a linker arm of five aminocaproyl groups (Rokitskaya et al. (2000) Biochemistry, 39, 13053-13058). The present study has revealed that the increase in tau is related to multivalent interaction of streptavidin with biotinylated gramicidin, i.e., to formation of a complex of streptavidin with several gramicidin channels, whereas binding of streptavidin to a single channel does not change the value of tau. A rather long linker arm attaching biotin to the C-terminus of gramicidin appeared to be required for the multivalent interaction of streptavidin with gramicidin channels, as the increase in tau was not observed with channels formed by gA2XB, the biotinylated gramicidin analog with a linker arm comprising only two aminocaproyl groups. However, the formation of a stoichiometric (1 : 1) complex of streptavidin with gA2XB apparently occurred. The multivalent interaction of streptavidin with gA5XB disappeared if biotinylated lipids were included into the diphytanoylphosphatidylcholine membrane. It is suggested that the slowing of gramicidin channel kinetics provoked by streptavidin binding is due to membrane-mediated elastic interactions between two neighboring channels.


Subject(s)
Anti-Bacterial Agents/chemistry , Biotin/chemistry , Gramicidin/chemistry , Ion Channels/chemistry , Lipid Bilayers/chemistry , Streptavidin/chemistry , Anti-Bacterial Agents/metabolism , Avidin/chemistry , Avidin/metabolism , Biotin/metabolism , Gramicidin/metabolism , Ion Channels/metabolism , Kinetics , Lipid Bilayers/metabolism , Lipids/chemistry , Models, Chemical , Protein Binding
20.
J Membr Biol ; 189(2): 119-30, 2002 Sep 15.
Article in English | MEDLINE | ID: mdl-12235487

ABSTRACT

Clustering of membrane proteins, in particular of ion channels, plays an important role in their functioning. To further elucidate the mechanism of such ion channel activity regulation, we performed experiments with a model system comprising the negatively-charged gramicidin analog, O-pyromellitylgramicidin (OPg) that forms ion channels in bilayer lipid membrane (BLM), and polycations. The effect of polylysines on the kinetics of OPg channels in BLM was studied by the method of sensitized photoinactivation. As found in our previous work, the interaction of polylysine with OPg led to the deceleration of the OPg photoinactivation kinetics, i.e., to the increase in the characteristic time of OPg photoinactivation. It was shown here that in a certain range of polylysine concentrations the photoinactivation kinetics displayed systematic deviations from a monoexponential curve and was well described by a sum of two exponentials. The deviations from the monoexponential approximation were more pronounced with polylysines having a lower degree of polymerization. These deviations increased also upon the elevation of the ionic strength of the bathing solution and the addition of calcium ions. A theoretical model is presented that relates the OPg photoinactivation kinetics at different concentration ratios of OPg and polylysine to the distribution of OPg molecules among OPg-polylysine clusters of different stoichiometry. This model is shown to explain qualitatively the experimental results, although the quantitative description of the whole body of evidence requires further development, assuming that the interaction of polylysine with OPg causes segregation of membrane domains enriched in OPg channels. The single-channel data, which revealed the insensitivity of the single-channel lifetime of OPg to the addition of polylysine, are in good agreement with the theoretical model.


Subject(s)
Gramicidin/chemistry , Ion Channels/chemistry , Lipid Bilayers/chemistry , Models, Chemical , Polylysine/chemistry , Cations/chemistry , Gramicidin/analogs & derivatives , Gramicidin/radiation effects , Ion Channels/classification , Ion Channels/radiation effects , Kinetics , Light , Lipid Bilayers/radiation effects , Membrane Microdomains/chemistry , Membrane Microdomains/radiation effects , Phosphatidylcholines/chemistry , Phosphatidylcholines/radiation effects , Photochemistry , Sensitivity and Specificity , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...