Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Cell Mol Biol ; 52(6): 762-71, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25353067

ABSTRACT

Inspiratory resistive breathing (RB), encountered in obstructive lung diseases, induces lung injury. The soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway is down-regulated in chronic and acute animal models of RB, such as asthma, chronic obstructive pulmonary disease, and in endotoxin-induced acute lung injury. Our objectives were to: (1) characterize the effects of increased concurrent inspiratory and expiratory resistance in mice via tracheal banding; and (2) investigate the contribution of the sGC/cGMP pathway in RB-induced lung injury. Anesthetized C57BL/6 mice underwent RB achieved by restricting tracheal surface area to 50% (tracheal banding). RB for 24 hours resulted in increased bronchoalveolar lavage fluid cellularity and protein content, marked leukocyte infiltration in the lungs, and perturbed respiratory mechanics (increased tissue resistance and elasticity, shifted static pressure-volume curve right and downwards, decreased static compliance), consistent with the presence of acute lung injury. RB down-regulated sGC expression in the lung. All manifestations of lung injury caused by RB were exacerbated by the administration of the sGC inhibitor, 1H-[1,2,4]oxodiazolo[4,3-]quinoxalin-l-one, or when RB was performed using sGCα1 knockout mice. Conversely, restoration of sGC signaling by prior administration of the sGC activator BAY 58-2667 (Bayer, Leverkusen, Germany) prevented RB-induced lung injury. Strikingly, direct pharmacological activation of sGC with BAY 58-2667 24 hours after RB reversed, within 6 hours, the established lung injury. These findings raise the possibility that pharmacological targeting of the sGC-cGMP axis could be used to ameliorate lung dysfunction in obstructive lung diseases.


Subject(s)
Guanylate Cyclase/metabolism , Lung Diseases, Obstructive/enzymology , Lung Injury/enzymology , Airway Resistance , Animals , Benzoates/pharmacology , Benzoates/therapeutic use , Cyclic GMP/metabolism , Drug Evaluation, Preclinical , Enzyme Activation , Guanylate Cyclase/antagonists & inhibitors , Lung Diseases, Obstructive/drug therapy , Lung Injury/drug therapy , Male , Mice, Inbred C57BL
2.
In Silico Biol ; 5(3): 295-311, 2005.
Article in English | MEDLINE | ID: mdl-15984938

ABSTRACT

The existence of a soluble splice variant for a gene encoding a transmembrane protein suggests that this gene plays a role in intercellular signalling, particularly in immunological processes. Also, the absence of a splice variant of a reported soluble variant suggests exclusive control of the solubilisation by proteolytic cleavage. Soluble splice variants of membrane proteins may also be interesting targets for crystallisation as their structure may be expected to preserve, at least partially, their function as integral membrane proteins, whose structures are most difficult to determine. This paper presents a dataset derived from the literature in an attempt to collect all reported soluble variants of membrane proteins, be they splice variants or shedded. A list of soluble variants is derived in silico from Ensembl. These are checked on their presence in multiple organisms and their number of membranespanning regions is inspected. The findings then are confirmed by a comparison with identified proteins of a recent global proteomics study of human blood plasma. Finally, a tool to determine novel soluble variants by proteomics is provided.


Subject(s)
Membrane Proteins/chemistry , Proteomics , RNA, Messenger/genetics , Animals , Humans , Membrane Proteins/genetics , Programming Languages , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...