Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1163367, 2023.
Article in English | MEDLINE | ID: mdl-37469515

ABSTRACT

Background: Salivary glands from blood-feeding arthropods secrete several molecules that inhibit mammalian hemostasis and facilitate blood feeding and pathogen transmission. The salivary functions from Simulium guianense, the main vector of Onchocerciasis in South America, remain largely understudied. Here, we have characterized a salivary protease inhibitor (Guianensin) from the blackfly Simulium guianense. Materials and methods: A combination of bioinformatic and biophysical analyses, recombinant protein production, in vitro and in vivo experiments were utilized to characterize the molecula mechanism of action of Guianensin. Kinetics of Guianensin interaction with proteases involved in vertebrate inflammation and coagulation were carried out by surface plasmon resonance and isothermal titration calorimetry. Plasma recalcification and coagulometry and tail bleeding assays were performed to understand the role of Guianensin in coagulation. Results: Guianensin was identified in the sialotranscriptome of adult S. guianense flies and belongs to the Kunitz domain of protease inhibitors. It targets various serine proteases involved in hemostasis and inflammation. Binding to these enzymes is highly specific to the catalytic site and is not detectable for their zymogens, the catalytic site-blocked human coagulation factor Xa (FXa), or thrombin. Accordingly, Guianensin significantly increased both PT (Prothrombin time) and aPTT (Activated partial thromboplastin time) in human plasma and consequently increased blood clotting time ex vivo. Guianensin also inhibited prothrombinase activity on endothelial cells. We show that Guianensin acts as a potent anti-inflammatory molecule on FXa-induced paw edema formation in mice. Conclusion: The information generated by this work highlights the biological functionality of Guianensin as an antithrombotic and anti-inflammatory protein that may play significant roles in blood feeding and pathogen transmission.


Subject(s)
Hemostatics , Simuliidae , Mice , Humans , Animals , Endothelial Cells , Hemostasis , Anti-Inflammatory Agents/pharmacology , Inflammation , Salivary Proteins and Peptides/pharmacology , Mammals
2.
Mol Ecol ; 31(15): 4162-4175, 2022 08.
Article in English | MEDLINE | ID: mdl-35661311

ABSTRACT

Few studies have examined tick proteomes, how they adapt to their environment, and their roles in the parasite-host interactions that drive tick infestation and pathogen transmission. Here we used a proteomics approach to screen for biologically and immunologically relevant proteins acting at the tick-host interface during tick feeding and, as proof of principle, measured host antibody responses to some of the discovered candidates. We used a label-free quantitative proteomic workflow to study salivary proteomes of (i) wild Ixodes ricinus ticks fed on different hosts, (ii) wild or laboratory ticks fed on the same host, and (iii) adult ticks cofed with nymphs. Our results reveal high and stable expression of several protease inhibitors and other tick-specific proteins under different feeding conditions. Most pathways functionally enriched in sialoproteomes were related to proteolysis, endopeptidase, and amine-binding activities. The generated catalogue of tick salivary proteins enabled the selection of six candidate secreted immunogenic peptides for rabbit immunizations, three of which induced strong and durable antigen-specific antibody responses in rabbits. Furthermore, rabbits exposed to ticks mounted immune responses against the candidate peptides/proteins, confirming their expression at the tick-vertebrate interface. Our approach provides insights into tick adaptation strategies to different feeding conditions and promising candidates for developing antitick vaccines or markers of exposure of vertebrate hosts to tick bites.


Subject(s)
Arthropod Proteins , Ixodes , Animals , Arthropod Proteins/genetics , Ixodes/genetics , Proteome/genetics , Proteome/metabolism , Proteomics/methods , Rabbits , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/metabolism , Vertebrates
3.
Int J Mol Sci ; 22(2)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477394

ABSTRACT

Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.


Subject(s)
Protease Inhibitors/isolation & purification , Protease Inhibitors/therapeutic use , Saliva/metabolism , Animals , Host-Parasite Interactions/genetics , Host-Parasite Interactions/immunology , Humans , Saliva/chemistry , Salivary Glands/metabolism , Ticks/metabolism , Transcriptome/genetics
4.
Front Microbiol ; 7: 1682, 2016.
Article in English | MEDLINE | ID: mdl-27822206

ABSTRACT

Ancestral sequence reconstruction has been widely used to test evolution-based hypotheses. The genome of the European tick vector, Ixodes ricinus, encodes for defensin peptides with diverse antimicrobial activities against distantly related pathogens. These pathogens include fungi, Gram-negative, and Gram-positive bacteria, i.e., a wide antimicrobial spectrum. Ticks do not transmit these pathogens, suggesting that these defensins may act against a wide range of microbes encountered by ticks during blood feeding or off-host periods. As demonstrated here, these I. ricinus defensins are also effective against the apicomplexan parasite Plasmodium falciparum. To study the general evolution of antimicrobial activity in tick defensins, the ancestral amino acid sequence of chelicerate defensins, which existed approximately 444 million years ago, was reconstructed using publicly available scorpion and tick defensin sequences (named Scorpions-Ticks Defensins Ancestor, STiDA). The activity of STiDA was tested against P. falciparum and the same Gram-negative and Gram-positive bacteria that were used for the I. ricinus defensins. While some extant tick defensins exhibit a wide antimicrobial spectrum, the ancestral defensin showed moderate activity against one of the tested microbes, P. falciparum. This study suggests that amino acid variability and defensin family expansion increased the antimicrobial spectrum of ancestral tick defensins.

5.
Sci Rep ; 6: 19300, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758086

ABSTRACT

Blood-feeding insects inject potent salivary components including complement inhibitors into their host's skin to acquire a blood meal. Sand fly saliva was shown to inhibit the classical pathway of complement; however, the molecular identity of the inhibitor remains unknown. Here, we identified SALO as the classical pathway complement inhibitor. SALO, an 11 kDa protein, has no homology to proteins of any other organism apart from New World sand flies. rSALO anti-complement activity has the same chromatographic properties as the Lu. longipalpis salivary gland homogenate (SGH)counterparts and anti-rSALO antibodies blocked the classical pathway complement activity of rSALO and SGH. Both rSALO and SGH inhibited C4b deposition and cleavage of C4. rSALO, however, did not inhibit the protease activity of C1s nor the enzymatic activity of factor Xa, uPA, thrombin, kallikrein, trypsin and plasmin. Importantly, rSALO did not inhibit the alternative or the lectin pathway of complement. In conclusion our data shows that SALO is a specific classical pathway complement inhibitor present in the saliva of Lu. longipalpis. Importantly, due to its small size and specificity, SALO may offer a therapeutic alternative for complement classical pathway-mediated pathogenic effects in human diseases.


Subject(s)
Complement Inactivating Agents/pharmacology , Complement Pathway, Classical/drug effects , Insect Proteins/pharmacology , Psychodidae/immunology , Psychodidae/metabolism , Saliva/metabolism , Animals , Chromatography, High Pressure Liquid , Complement Activation/drug effects , Complement C1/antagonists & inhibitors , Complement C1/immunology , Complement C1/metabolism , Complement C4/antagonists & inhibitors , Complement C4/immunology , Complement C4/metabolism , Humans , Recombinant Proteins/pharmacology
6.
PLoS One ; 10(8): e0133991, 2015.
Article in English | MEDLINE | ID: mdl-26244557

ABSTRACT

A group of peptides from the salivary gland of the tick Hyalomma marginatum rufipes, a vector of Crimean Congo hemorrhagic fever show weak similarity to the madanins, a group of thrombin-inhibitory peptides from a second tick species, Haemaphysalis longicornis. We have evaluated the anti-serine protease activity of one of these H. marginatum peptides that has been given the name hyalomin-1. Hyalomin-1 was found to be a selective inhibitor of thrombin, blocking coagulation of plasma and inhibiting S2238 hydrolysis in a competitive manner with an inhibition constant (Ki) of 12 nM at an ionic strength of 150 mM. It also blocks the thrombin-mediated activation of coagulation factor XI, thrombin-mediated platelet aggregation, and the activation of coagulation factor V by thrombin. Hyalomin-1 is cleaved at a canonical thrombin cleavage site but the cleaved products do not inhibit coagulation. However, the C-terminal cleavage product showed non-competitive inhibition of S2238 hydrolysis. A peptide combining the N-terminal parts of the molecule with the cleavage region did not interact strongly with thrombin, but a 24-residue fragment containing the cleavage region and the C-terminal fragment inhibited the enzyme in a competitive manner and also inhibited coagulation of plasma. These results suggest that the peptide acts by binding to the active site as well as exosite I or the autolysis loop of thrombin. Injection of 2.5 mg/kg of hyalomin-1 increased arterial occlusion time in a mouse model of thrombosis, suggesting this peptide could be a candidate for clinical use as an antithrombotic.


Subject(s)
Anticoagulants/isolation & purification , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Peptides/isolation & purification , Peptides/pharmacology , Thrombin/antagonists & inhibitors , Ticks/chemistry , Amino Acid Sequence , Animals , Anticoagulants/chemistry , Blood Coagulation Tests , Humans , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Peptides/chemistry , Platelet Aggregation/drug effects , Sequence Alignment , Thrombin/metabolism , Thrombosis/drug therapy
7.
Dev Comp Immunol ; 53(2): 358-65, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26255244

ABSTRACT

Antimicrobial peptides are ubiquitous components of eukaryotic innate immunity. Defensins are a well-known family of antimicrobial peptides, widely distributed in ticks, insects, plants and mammals, showing activity against bacteria, viruses, fungi, yeast and protozoan parasites. Ixodes ricinus is the most common tick species in Europe and is a vector of pathogens affecting human and animal health. Recently, six defensins (including two isoforms) were identified in I. ricinus. We investigated the evolution of the antimicrobial activity of I. ricinus defensins. Among the five unique defensins, only DefMT3, DefMT5 and DefMT6 showed in vitro antimicrobial activity. Each defensin was active against rather distantly-related bacteria (P < 0.05), significantly among Gram-negative species (P < 0.0001). These three defensins represent different clades within the family of tick defensins, suggesting that the last common ancestor of tick defensins may have had comparable antimicrobial activity. Differences in electrostatic potential, and amino acid substitutions in the ß-hairpin and the loop bridging the α-helix and ß-sheet may affect the antimicrobial activity in DefMT2 and DefMT7, which needs to be addressed. Additionally, the antimicrobial activity of the γ-core motif of selected defensins (DefMT3, DefMT6, and DefMT7) was also tested. Interestingly, compared to full length peptides, the γ-core motifs of these defensins were effective against less species of bacteria. However, the antifungal activity of the γ-core was higher than full peptides. Our results broaden the scope of research in the field of antimicrobial peptides highlighting the overlooked ability of arthropod defensins to act against distantly-related microorganisms.


Subject(s)
Bacterial Infections/immunology , Defensins/metabolism , Insect Proteins/metabolism , Ixodes , Mycoses/immunology , Amino Acid Motifs , Animals , Biological Evolution , Cells, Cultured , Defensins/genetics , Host-Pathogen Interactions , Immunity, Innate , Insect Proteins/genetics , Species Specificity
9.
J Immunol ; 195(2): 621-31, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26078269

ABSTRACT

Coevolution of ticks and the vertebrate immune system has led to the development of immunosuppressive molecules that prevent immediate response of skin-resident immune cells to quickly fend off the parasite. In this article, we demonstrate that the tick-derived immunosuppressor sialostatin L restrains IL-9 production by mast cells, whereas degranulation and IL-6 expression are both unaffected. In addition, the expression of IL-1ß and IRF4 is strongly reduced in the presence of sialostatin L. Correspondingly, IRF4- or IL-1R-deficient mast cells exhibit a strong impairment in IL-9 production, demonstrating the importance of IRF4 and IL-1 in the regulation of the Il9 locus in mast cells. Furthermore, IRF4 binds to the promoters of Il1b and Il9, suggesting that sialostatin L suppresses mast cell-derived IL-9 preferentially by inhibiting IRF4. In an experimental asthma model, mast cell-specific deficiency in IRF4 or administration of sialostatin L results in a strong reduction in asthma symptoms, demonstrating the immunosuppressive potency of tick-derived molecules.


Subject(s)
Cystatins/pharmacology , Immunity, Innate/drug effects , Immunosuppressive Agents/pharmacology , Interferon Regulatory Factors/immunology , Interleukin-9/immunology , Mast Cells/drug effects , Animals , Asthma/genetics , Asthma/immunology , Asthma/pathology , Binding Sites , Cell Degranulation/immunology , Cystatins/immunology , Gene Expression Regulation , Host-Parasite Interactions/immunology , Interferon Regulatory Factors/deficiency , Interferon Regulatory Factors/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Interleukin-6/genetics , Interleukin-6/immunology , Interleukin-9/antagonists & inhibitors , Interleukin-9/genetics , Mast Cells/immunology , Mast Cells/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , Protein Binding , Receptors, Interleukin-1/genetics , Receptors, Interleukin-1/immunology , Signal Transduction , Transcription, Genetic
10.
PLoS Negl Trop Dis ; 9(5): e0003754, 2015 May.
Article in English | MEDLINE | ID: mdl-25970599

ABSTRACT

BACKGROUND: Ixodes ricinus is the main tick vector of the microbes that cause Lyme disease and tick-borne encephalitis in Europe. Pathogens transmitted by ticks have to overcome innate immunity barriers present in tick tissues, including midgut, salivary glands epithelia and the hemocoel. Molecularly, invertebrate immunity is initiated when pathogen recognition molecules trigger serum or cellular signalling cascades leading to the production of antimicrobials, pathogen opsonization and phagocytosis. We presently aimed at identifying hemocyte transcripts from semi-engorged female I. ricinus ticks by mass sequencing a hemocyte cDNA library and annotating immune-related transcripts based on their hemocyte abundance as well as their ubiquitous distribution. METHODOLOGY/PRINCIPAL FINDINGS: De novo assembly of 926,596 pyrosequence reads plus 49,328,982 Illumina reads (148 nt length) from a hemocyte library, together with over 189 million Illumina reads from salivary gland and midgut libraries, generated 15,716 extracted coding sequences (CDS); these are displayed in an annotated hyperlinked spreadsheet format. Read mapping allowed the identification and annotation of tissue-enriched transcripts. A total of 327 transcripts were found significantly over expressed in the hemocyte libraries, including those coding for scavenger receptors, antimicrobial peptides, pathogen recognition proteins, proteases and protease inhibitors. Vitellogenin and lipid metabolism transcription enrichment suggests fat body components. We additionally annotated ubiquitously distributed transcripts associated with immune function, including immune-associated signal transduction proteins and transcription factors, including the STAT transcription factor. CONCLUSIONS/SIGNIFICANCE: This is the first systems biology approach to describe the genes expressed in the haemocytes of this neglected disease vector. A total of 2,860 coding sequences were deposited to GenBank, increasing to 27,547 the number so far deposited by our previous transcriptome studies that serves as a discovery platform for studies with I. ricinus biochemistry and physiology.


Subject(s)
Arachnid Vectors/genetics , Arthropod Proteins/genetics , Hemocytes/cytology , Ixodes/genetics , Transcriptome/genetics , Animals , Arachnid Vectors/microbiology , Base Sequence , Encephalitis, Tick-Borne/microbiology , Europe , Female , Gene Expression Profiling , Gene Library , High-Throughput Nucleotide Sequencing , Ixodes/immunology , Ixodes/microbiology , Lyme Disease/microbiology , Molecular Sequence Data , Salivary Glands/cytology , Sequence Analysis, DNA
11.
Parasit Vectors ; 8: 275, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25975355

ABSTRACT

BACKGROUND: Transmission of pathogens by ticks is greatly supported by tick saliva released during feeding. Dendritic cells (DC) act as immunological sentinels and interconnect the innate and adaptive immune system. They control polarization of the immune response towards Th1 or Th2 phenotype. We investigated whether salivary cystatins from the hard tick Ixodes scapularis, sialostatin L (Sialo L) and sialostatin L2 (Sialo L2), influence mouse dendritic cells exposed to Borrelia burgdorferi and relevant Toll-like receptor ligands. METHODS: DCs derived from bone-marrow by GM-CSF or Flt-3 ligand, were activated with Borrelia spirochetes or TLR ligands in the presence of 3 µM Sialo L and 3 µM Sialo L2. Produced chemokines and IFN-ß were measured by ELISA test. The activation of signalling pathways was tested by western blotting using specific antibodies. The maturation of DC was determined by measuring the surface expression of CD86 by flow cytometry. RESULTS: We determined the effect of cystatins on the production of chemokines in Borrelia-infected bone-marrow derived DC. The production of MIP-1α was severely suppressed by both cystatins, while IP-10 was selectively inhibited only by Sialo L2. As TLR-2 is a major receptor activated by Borrelia spirochetes, we tested whether cystatins influence signalling pathways activated by TLR-2 ligand, lipoteichoic acid (LTA). Sialo L2 and weakly Sialo L attenuated the extracellular matrix-regulated kinase (Erk1/2) pathway. The activation of phosphatidylinositol-3 kinase (PI3K)/Akt pathway and nuclear factor-κB (NF-κB) was decreased only by Sialo L2. In response to Borrelia burgdorferi, the activation of Erk1/2 was impaired by Sialo L2. Production of IFN-ß was analysed in plasmacytoid DC exposed to Borrelia, TLR-7, and TLR-9 ligands. Sialo L, in contrast to Sialo L2, decreased the production of IFN-ß in pDC and also impaired the maturation of these cells. CONCLUSIONS: This study shows that DC responses to Borrelia spirochetes are affected by tick cystatins. Sialo L influences the maturation of DC thus having impact on adaptive immune response. Sialo L2 affects the production of chemokines potentially engaged in the development of inflammatory response. The impact of cystatins on Borrelia growth in vivo is discussed.


Subject(s)
Borrelia burgdorferi/immunology , Cystatins/pharmacology , Dendritic Cells/drug effects , Ixodes/physiology , Animals , Dendritic Cells/physiology , Female , Lipopolysaccharides , Mice , Mice, Inbred C57BL , Saliva/chemistry , Signal Transduction/physiology , Teichoic Acids
12.
Sci Rep ; 5: 9103, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25765539

ABSTRACT

Ixodes ricinus is a tick that transmits the pathogens of Lyme and several arboviral diseases. Pathogens invade the tick midgut, disseminate through the hemolymph, and are transmitted to the vertebrate host via the salivary glands; subverting these processes could be used to interrupt pathogen transfer. Here, we use massive de novo sequencing to characterize the transcriptional dynamics of the salivary and midgut tissues of nymphal and adult I. ricinus at various time points after attachment on the vertebrate host. Members of a number of gene families show stage- and time-specific expression. We hypothesize that gene expression switching may be under epigenetic control and, in support of this, identify 34 candidate proteins that modify histones. I. ricinus-secreted proteins are encoded by genes that have a non-synonymous to synonymous mutation rate even greater than immune-related genes. Midgut transcriptome (mialome) analysis reveals several enzymes associated with protein, carbohydrate, and lipid digestion, transporters and channels that might be associated with nutrient uptake, and immune-related transcripts including antimicrobial peptides. This publicly available dataset supports the identification of protein and gene targets for biochemical and physiological studies that exploit the transmission lifecycle of this disease vector for preventative and therapeutic purposes.


Subject(s)
Intestinal Mucosa/metabolism , Ixodes/genetics , Salivary Glands/metabolism , Transcription, Genetic , Animals , Cluster Analysis , Computational Biology , Gene Expression Profiling , Ixodes/classification , Molecular Sequence Annotation , Organ Specificity/genetics , Phylogeny , Polymorphism, Genetic , Time Factors , Transcriptome
13.
Infect Immun ; 83(5): 1949-56, 2015 May.
Article in English | MEDLINE | ID: mdl-25712932

ABSTRACT

Th17 cells constitute a subset of CD4(+) T lymphocytes that play a crucial role in protection against extracellular bacteria and fungi. They are also associated with tissue injury in autoimmune and inflammatory diseases. Here, we report that serpin from the tick Ixodes ricinus, IRS-2, inhibits Th17 differentiation by impairment of the interleukin-6 (IL-6)/STAT-3 signaling pathway. Following activation, mature dendritic cells produce an array of cytokines, including the pleiotropic cytokine IL-6, which triggers the IL-6 signaling pathway. The major transcription factor activated by IL-6 is STAT-3. We show that IRS-2 selectively inhibits production of IL-6 in dendritic cells stimulated with Borrelia spirochetes, which leads to attenuated STAT-3 phosphorylation and finally to impaired Th17 differentiation. The results presented extend the knowledge about the effect of tick salivary serpins on innate immunity cells and their function in driving adaptive immune responses.


Subject(s)
Cell Differentiation/drug effects , Dendritic Cells/drug effects , Interleukin-6/antagonists & inhibitors , STAT3 Transcription Factor/antagonists & inhibitors , Serpins/metabolism , Signal Transduction/drug effects , Th17 Cells/drug effects , Animals , Borrelia/immunology , Dendritic Cells/physiology , Female , Interleukin-6/metabolism , Ixodes , Mice, Inbred C57BL , STAT3 Transcription Factor/metabolism , Th17 Cells/physiology
14.
PLoS Pathog ; 10(9): e1004338, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25211214

ABSTRACT

BACKGROUND: Invasion of mosquito salivary glands (SGs) by Plasmodium falciparum sporozoites is an essential step in the malaria life cycle. How infection modulates gene expression, and affects hematophagy remains unclear. PRINCIPAL FINDINGS: Using Affimetrix chip microarray, we found that at least 43 genes are differentially expressed in the glands of Plasmodium falciparum-infected Anopheles gambiae mosquitoes. Among the upregulated genes, one codes for Agaphelin, a 58-amino acid protein containing a single Kazal domain with a Leu in the P1 position. Agaphelin displays high homology to orthologs present in Aedes sp and Culex sp salivary glands, indicating an evolutionarily expanded family. Kinetics and surface plasmon resonance experiments determined that chemically synthesized Agaphelin behaves as a slow and tight inhibitor of neutrophil elastase (K(D) ∼ 10 nM), but does not affect other enzymes, nor promotes vasodilation, or exhibit antimicrobial activity. TAXIscan chamber assay revealed that Agaphelin inhibits neutrophil chemotaxis toward fMLP, affecting several parameter associated with cell migration. In addition, Agaphelin reduces paw edema formation and accumulation of tissue myeloperoxidase triggered by injection of carrageenan in mice. Agaphelin also blocks elastase/cathepsin-mediated platelet aggregation, abrogates elastase-mediated cleavage of tissue factor pathway inhibitor, and attenuates neutrophil-induced coagulation. Notably, Agaphelin inhibits neutrophil extracellular traps (NETs) formation and prevents FeCl3-induced arterial thrombosis, without impairing hemostasis. CONCLUSIONS: Blockade of neutrophil elastase emerges as a novel antihemostatic mechanism in hematophagy; it also supports the notion that neutrophils and the innate immune response are targets for antithrombotic therapy. In addition, Agaphelin is the first antihemostatic whose expression is induced by Plasmodium sp infection. These results suggest that an important interplay takes place in parasite-vector-host interactions.


Subject(s)
Anopheles/parasitology , Hemostasis/physiology , Host-Parasite Interactions , Insect Proteins/metabolism , Neutrophils/immunology , Plasmodium falciparum/pathogenicity , Salivary Proteins and Peptides/metabolism , Thrombosis/prevention & control , Amino Acid Sequence , Animals , Anopheles/metabolism , Circular Dichroism , Edema/etiology , Edema/metabolism , Edema/prevention & control , Female , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Vectors , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Sequence Data , Salivary Glands/metabolism , Salivary Glands/parasitology , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/genetics , Sequence Homology, Amino Acid , Surface Plasmon Resonance
15.
Parasit Vectors ; 6: 329, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24238038

ABSTRACT

BACKGROUND: Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. METHODS: Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. RESULTS: Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 µg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 µg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. CONCLUSION: Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.


Subject(s)
Aedes/physiology , Dendritic Cells/drug effects , Lymphocytes/drug effects , Saliva/chemistry , Adoptive Transfer , Animals , Cell Differentiation , Cell Proliferation , Flow Cytometry , Mice, Inbred BALB C , Spleen/cytology
16.
FASEB J ; 27(12): 4745-56, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23964076

ABSTRACT

Tick salivary gland (SG) proteins possess powerful pharmacologic properties that facilitate tick feeding and pathogen transmission. For the first time, SG transcriptomes of Ixodes ricinus, an important disease vector for humans and animals, were analyzed using next-generation sequencing. SGs were collected from different tick life stages fed on various animal species, including cofeeding of nymphs and adults on the same host. Four cDNA samples were sequenced, discriminating tick SG transcriptomes of early- and late-feeding nymphs or adults. In total, 441,381,454 pyrosequencing reads and 67,703,183 Illumina reads were assembled into 272,220 contigs, of which 34,560 extensively annotated coding sequences are disclosed; 8686 coding sequences were submitted to GenBank. Overall, 13% of contigs were classified as secreted proteins that showed significant differences in the transcript representation among the 4 SG samples, including high numbers of sample-specific transcripts. Detailed phylogenetic reconstructions of two relatively abundant SG-secreted protein families demonstrated how this study improves our understanding of the molecular evolution of hematophagy in arthropods. Our data significantly increase the available genomic information for I. ricinus and form a solid basis for future tick genome/transcriptome assemblies and the functional analysis of effectors that mediate the feeding physiology and parasite-vector interaction of I. ricinus.


Subject(s)
Ixodes/chemistry , Salivary Glands/metabolism , Transcriptome , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Base Sequence , DNA, Complementary/chemistry , DNA, Complementary/genetics , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Ixodes/genetics , Ixodes/metabolism , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Sequence Analysis, DNA
17.
PLoS One ; 8(5): e62562, 2013.
Article in English | MEDLINE | ID: mdl-23658744

ABSTRACT

BACKGROUND: A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins) to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions. RESULTS: We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for ß-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for ß-tryptase. Using homology-based modeling (and other protein prediction programs) we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases). CONCLUSIONS: By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level.


Subject(s)
Arthropod Proteins/chemistry , Ixodes/metabolism , Salivary Proteins and Peptides/chemistry , Serine Proteinase Inhibitors/chemistry , Tryptases/chemistry , Amino Acid Motifs , Animals , Arthropod Proteins/classification , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , Cysteine/chemistry , Cysteine/genetics , Humans , Ixodes/chemistry , Ixodes/genetics , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Rhipicephalus/chemistry , Rhipicephalus/genetics , Rhipicephalus/metabolism , Salivary Proteins and Peptides/classification , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/metabolism , Sequence Homology, Amino Acid , Serine Proteinase Inhibitors/classification , Serine Proteinase Inhibitors/genetics , Serine Proteinase Inhibitors/metabolism , Tryptases/antagonists & inhibitors , Tryptases/metabolism
18.
Arterioscler Thromb Vasc Biol ; 32(9): 2185-98, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22796577

ABSTRACT

OBJECTIVE: Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS: Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS: Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Factor Xa Inhibitors , Fibrinolytic Agents/pharmacology , Inflammation/prevention & control , Insect Proteins/pharmacology , Psychodidae/chemistry , Receptor, PAR-2/antagonists & inhibitors , Salivary Glands/chemistry , Thrombosis/prevention & control , Amino Acid Sequence , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Blood Coagulation/drug effects , Calorimetry , Cell Line, Tumor , Chlorides , Cloning, Molecular , Disease Models, Animal , Dose-Response Relationship, Drug , Factor Xa/metabolism , Female , Ferric Compounds , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/isolation & purification , HEK293 Cells , Humans , Inflammation/blood , Inflammation/metabolism , Insect Proteins/chemistry , Insect Proteins/isolation & purification , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Molecular Weight , Partial Thromboplastin Time , Protein Binding , Prothrombin Time , Rats , Receptor, PAR-2/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Surface Plasmon Resonance , Thromboplastin/antagonists & inhibitors , Thromboplastin/metabolism , Thrombosis/blood , Thrombosis/chemically induced , Thrombosis/metabolism , Time Factors
19.
Ticks Tick Borne Dis ; 3(3): 117-27, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22647711

ABSTRACT

Ticks, as obligate hematophagous ectoparasites, impact greatly on animal and human health because they transmit various pathogens worldwide. Over the last decade, several cystatins from different hard and soft ticks were identified and biochemically analyzed for their role in the physiology and blood feeding lifestyle of ticks. All these cystatins are potent inhibitors of papain-like cysteine proteases, but not of legumain. Tick cystatins were either detected in the salivary glands and/or the midgut, key tick organs responsible for blood digestion and the expression of pharmacologically potent salivary proteins for blood feeding. For example, the transcription of two cystatins named HlSC-1 and Sialostatin L2 was highly upregulated in these tick tissues during feeding. Vaccinating hosts against Sialostatin L2 and Om-cystatin 2 as well as silencing of a cystatin gene from Amblyomma americanum significantly inhibited the feeding ability of ticks. Additionally, Om-cystatin 2 and Sialostatin L possessed strong host immunosuppressive properties by inhibiting dendritic cell maturation due to their interaction with cathepsin S. These two cystatins, together with Sialostatin L2 are the first tick cystatins with resolved three-dimensional structure. Sialostatin L, furthermore, showed preventive properties against autoimmune diseases. In the case of the cystatin Hlcyst-2, experimental evidence showed its role in tick innate immunity, since increased Hlcyst-2 transcript levels were detected in Babesia gibsoni-infected larval ticks and the protein inhibited Babesia growth. Other cystatins, such as Hlcyst-1 or Om-cystatin 2 are assumed to be involved in regulating blood digestion. Only for Bmcystatin was a role in tick embryogenesis suggested. Finally, all the biochemically analyzed tick cystatins are powerful protease inhibitors, and some may be novel antigens for developing anti-tick vaccines and drugs of medical importance due to their stringent target specificity.


Subject(s)
Cystatins/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Feeding Behavior/drug effects , Ticks/drug effects , Amino Acid Sequence , Animals , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment , Ticks/physiology
20.
Insect Biochem Mol Biol ; 42(9): 610-20, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22617725

ABSTRACT

Mosquito saliva carries a large number of factors with anti-hemostatic, anti-inflammatory and immuno-modulatory activities. The cE5 protein was initially identified during an Anopheles gambiae salivary gland transcriptome study and later shown to share sequence similarity with anophelin, a thrombin inhibitor from the saliva of the New World mosquito Anopheles albimanus. The cE5 gene was found to encode different mRNA isoforms coexisting in several tissues of both male and female mosquitoes, a highly unusual profile for a gene potentially encoding an anti-thrombin and involved in blood feeding. Expression of the cE5 protein and assessment of its activity and inhibitory properties showed that it is a highly specific and tight-binding thrombin inhibitor, which differs from the A. albimanus orthologue for the fast-binding kinetics. Despite the widespread occurrence of cE5 transcripts in different mosquito tissues the corresponding protein was only found in female salivary glands, where it undergoes post-translational modification. Therefore, tissue-specific restriction of the A. gambiae cE5 is not achieved by transcriptional control, as common for mosquito salivary genes involved in hematophagy, but by post-trascriptional gene regulatory mechanisms. Our observations provide a paradigm of post-transcriptional regulation as key determinant of tissue specificity for a protein from an important disease vector and point out that transcriptomic data should be interpreted with caution in the absence of concomitant proteomic support.


Subject(s)
Anopheles/metabolism , Antithrombins/metabolism , Insect Proteins/metabolism , Animals , Anopheles/genetics , Antithrombins/chemistry , Antithrombins/isolation & purification , Female , Gene Expression Regulation , Genes, Insect , Male , Recombinant Proteins/metabolism , Salivary Glands/metabolism , Serine Proteinase Inhibitors/analysis , Serine Proteinase Inhibitors/metabolism , Sodium Chloride , Thrombin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...