Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(36): e202309472, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37439593

ABSTRACT

Iron(II), (Fe(H2 O)6 2+ , (FeII ) participates in many reactions of natural and biological importance. It is critically important to understand the rates and the mechanism of FeII oxidation by dissolved molecular oxygen, O2 , under environmental conditions containing bicarbonate (HCO3 - ), which exists up to millimolar concentrations. In the absence and presence of HCO3 - , the formation of reactive oxygen species (O2 ⋅- , H2 O2 , and HO⋅) in FeII oxidation by O2 has been suggested. In contrast, our study demonstrates for the first time the rapid generation of carbonate radical anions (CO3 ⋅- ) in the oxidation of FeII by O2 in the presence of bicarbonate, HCO3 - . The rate of the formation of CO3 ⋅- may be expressed as d[CO3 ⋅- ]/dt=[FeII [[O2 ][HCO3 - ]2 . The formation of reactive species was investigated using 1 H nuclear magnetic resonance (1 H NMR) and gas chromatographic techniques. The study presented herein provides new insights into the reaction mechanism of FeII oxidation by O2 in the presence of bicarbonate and highlights the importance of considering the formation of CO3 ⋅- in the geochemical cycling of iron and carbon.

2.
Environ Sci Technol ; 57(16): 6743-6753, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37050889

ABSTRACT

Many advanced oxidation processes (AOPs) use Fenton-like reactions to degrade organic pollutants by activating peroxymonosulfate (HSO5-, PMS) or peroxydisulfate (S2O82-, PDS) with Fe(H2O)62+ (FeaqII). This paper presents results on the kinetics and mechanisms of reactions between FeaqII and PMS or PDS in the absence and presence of bicarbonate (HCO3-) at different pH. In the absence of HCO3-, FeaqIV, rather than the commonly assumed SO4•-, is the dominant oxidizing species. Multianalytical methods verified the selective conversion of dimethyl sulfoxide (DMSO) and phenyl methyl sulfoxide (PMSO) to dimethyl sulfone (DMSO2) and phenyl methyl sulfone (PMSO2), respectively, confirming the generation of FeaqIV by the FeaqII-PMS/PDS systems without HCO3-. Significantly, in the presence of environmentally relevant concentrations of HCO3-, a carbonate radical anion (CO3•-) becomes the dominant reactive species as confirmed by the electron paramagnetic resonance (EPR) analysis. The new findings suggest that the mechanisms of the persulfate-based Fenton-like reactions in natural environments might differ remarkably from those obtained in ideal conditions. Using sulfonamide antibiotics (sulfamethoxazole (SMX) and sulfadimethoxine (SDM)) as model contaminants, our study further demonstrated the different reactivities of FeaqIV and CO3•- in the FeaqII-PMS/PDS systems. The results shed significant light on advancing the persulfate-based AOPs to oxidize pollutants in natural water.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Bicarbonates , Dimethyl Sulfoxide , Peroxides , Carbonates , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...