Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 143(50): 21200-21205, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34878283

ABSTRACT

The ability to fabricate polymeric materials with spatially controlled physical properties has been a challenge in thermoset manufacturing. To address this challenge, this work takes advantage of a photoswitchable polymerization that selectively incorporates different monomers at a growing chain by converting from cationic to radical polymerizations through modulation of the wavelength of irradiation. By regulating the dosage and wavelength of light applied to the system, the mechanical properties of the crosslinked material can be temporally and spatially tuned. Furthermore, photopatterning can be achieved both on the macroscale and the microscale, enabling precise spatial control of crosslink density that results in high-resolution control over mechanical properties.

2.
Angew Chem Int Ed Engl ; 60(9): 4535-4539, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33137229

ABSTRACT

The synthesis of high-molecular-weight poly(vinyl ethers) under mild conditions is a significant challenge, since cationic polymerization reactions are highly sensitive to chain-transfer and termination events. We identified a novel and highly effective hydrogen bond donor (HBD)-organic acid pair that can facilitate controlled cationic polymerization of vinyl ethers under ambient conditions with excellent monomer compatibility. Poly(vinyl ethers) of molar masses exceeding 50 kg mol-1 can be produced within 1 h without elaborate reagent purification. Modification of the HBD structure allowed tuning of the polymerization rate, while DFT calculations helped elucidate crucial intermolecular interactions between the HBD, organic acid, and polymer chain end.

3.
J Am Chem Soc ; 142(10): 4581-4585, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32046481

ABSTRACT

Given the ubiquity of carbon-hydrogen bonds in biomolecules and polymer backbones, the development of a photocontrolled polymerization selectively grafting from a C-H bond represents a powerful strategy for polymer conjugation. This approach would circumvent the need for complex synthetic pathways currently used to introduce functionality at a polymer chain end. On this basis, we developed a hydrogen-atom abstraction strategy that allows for a controlled polymerization selectively from a hydridic C-H bond using a benzophenone photocatalyst, a trithiocarbonate-derived disulfide, and visible light. We performed the polymerization from a variety of ethers, alkanes, unactivated C-H bonds, and alcohols. Our method lends itself to photocontrol which has important implications for building advanced macromolecular architectures. Finally, we demonstrate that we can graft polymer chains controllably from poly(ethylene glycol) showcasing the potential application of this method for controlled grafting from C-H bonds of commodity polymers.

4.
J Am Chem Soc ; 141(27): 10605-10609, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31240909

ABSTRACT

Cationic polymerizations provide a valuable strategy for preparing macromolecules with excellent control but are inherently sensitive to impurities and commonly require rigorous reagent purification, low temperatures, and strictly anhydrous reaction conditions. By using pentacarbomethoxycyclopentadiene (PCCP) as the single-component initiating organic acid, we found that a diverse library of vinyl ethers can be controllably polymerized under ambient conditions. Additionally, excellent chain-end fidelity is maintained even without rigorous monomer purification. We hypothesize that a tight ion complex between the PCCP anion and the oxocarbenium ion chain end prevents chain-transfer events and enables a polymerization with living characteristics. Furthermore, terminating the polymerization with functional nucleophiles allows for chain-end functionalization in high yields.

5.
J Polym Sci A Polym Chem ; 57(3): 268-273, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-31011240

ABSTRACT

A signature of photo-mediated controlled polymerizations is the ability to modulate the rate of polymerization by turning the light source 'on' and 'off.' However, in many reported systems, growth can be reproducibly observed during dark periods. In this study, emerging photo-mediated controlled radical polymerizations are evaluated with in situ 1H NMR monitoring to assess their behavior in the dark. Interestingly, it is observed that Cu-mediated systems undergo long-lived, linear growth during dark periods in organic media.

6.
ACS Cent Sci ; 4(9): 1228-1234, 2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30276257

ABSTRACT

The development of next-generation materials is coupled with the ability to predictably and precisely synthesize polymers with well-defined structures and architectures. In this regard, the discovery of synthetic strategies that allow on demand control over monomer connectivity during polymerization would provide access to complex structures in a modular fashion and remains a grand challenge in polymer chemistry. In this Article, we report a method where monomer selectivity is controlled during the polymerization by the application of two orthogonal stimuli. Specifically, we developed a cationic polymerization where polymer chain growth is controlled by a chemical stimulus and paired it with a compatible photocontrolled radical polymerization. By alternating the application of the chemical and photochemical stimuli the incorporation of vinyl ethers and acrylates could be dictated by switching between cationic and radical polymerization mechanisms, respectively. This enables the synthesis of multiblock copolymers where each block length is governed by the amount of time a stimulus is applied, and the quantity of blocks is determined by the number of times the two stimuli are toggled. This new method allows on demand control over polymer structure with external influences and highlights the potential for using stimuli-controlled polymerizations to access novel materials.

7.
Angew Chem Int Ed Engl ; 57(27): 8260-8264, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29750387

ABSTRACT

Gaining temporal control over chain growth is a key challenge in the enhancement of controlled living polymerizations. Though research on photocontrolled polymerizations is still in its infancy, it has already proven useful in the development of previously inaccessible materials. Photocontrol has now been extended to cationic polymerizations using 2,4,6-triarylpyrylium salts as photocatalysts. Despite the ability to stop polymerization for a short time, monomer conversion was observed over long dark periods. Improved catalyst systems based on Ir complexes give optimal temporal control over chain growth. The excellent stability of these complexes and the ability to tune the excited and ground state redox potentials to regulate the number of monomer additions per cation formed allows polymerization to be halted for more than 20 hours. The excellent stability of these iridium catalysts in the presence of more nucleophilic species enables chain-end functionalization of these polymers.

8.
J Am Chem Soc ; 139(43): 15530-15538, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28985061

ABSTRACT

The mechanism of the recently reported photocontrolled cationic polymerization of vinyl ethers was investigated using a variety of catalysts and chain-transfer agents (CTAs) as well as diverse spectroscopic and electrochemical analytical techniques. Our study revealed a complex activation step characterized by one-electron oxidation of the CTA. This oxidation is followed by mesolytic cleavage of the resulting radical cation species, which leads to the generation of a reactive cation-this species initiates the polymerization of the vinyl ether monomer-and a dithiocarbamate radical that is likely in equilibrium with the corresponding thiuram disulfide dimer. Reversible addition-fragmentation type degenerative chain transfer contributes to the narrow dispersities and control over chain growth observed under these conditions. Finally, the deactivation step is contingent upon the oxidation of the reduced photocatalyst by the dithiocarbamate radical concomitant with the production of a dithiocarbamate anion that caps the polymer chain end. The fine-tuning of the electronic properties and redox potentials of the photocatalyst in both the excited and the ground states is necessary to obtain a photocontrolled system rather than simply a photoinitiated system. The elucidation of the elementary steps of this process will aid the design of new catalytic systems and their real-world applications.


Subject(s)
Cations/chemistry , Polymerization/radiation effects , Vinyl Compounds/chemistry , Catalysis/radiation effects , Oxidation-Reduction/drug effects
9.
J Am Chem Soc ; 139(31): 10665-10668, 2017 08 09.
Article in English | MEDLINE | ID: mdl-28745047

ABSTRACT

The ability to combine two polymerization mechanisms in a one-pot setup and switch the monomer selectivity via an external stimulus provides an excellent opportunity to control polymer sequence and structure. We report a strategy that enables monomer incorporation to be determined via the selection of the wavelength of light through selective activation of either cationic or radical processes. This method enables the synthesis of varying polymeric structures under identical solution conditions but with simple modulation of the external stimulus. Additionally, changes in the ratios of the two photocatalysts afford complementary chemical control over these reactions to design elaborated polymeric structures. Our strategy takes advantage of the unique regulation that can be accessed through light.

10.
Angew Chem Int Ed Engl ; 56(33): 9670-9679, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28277625

ABSTRACT

During the last 40 years, researchers investigating photoinitiated cationic polymerizations have delivered tremendous success in both industrial and academic settings. A myriad of photoinitiating systems have been developed, thus allowing polymerization of a broad array of monomers (e.g., epoxides, vinyl ethers, alkenes, cyclic ethers, and lactones) under practical, inexpensive, and environmentally benign conditions. More recently, owing to progress in photoredox catalysis, photocontrolled cationic polymerization has emerged as a means to precisely regulate polymer chain growth. This Minireview provides a concise historical perspective on cationic polymerization induced by light and discusses the latest advances in both photoinitiated and photocontrolled processes. The latter are exciting new directions for the field that will likely impact industries ranging from micropatterning to the synthesis of complex biomaterials and sequence-controlled polymers.

11.
J Am Chem Soc ; 138(48): 15535-15538, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27934022

ABSTRACT

Photoinitiated cationic polymerizations are widely used in industrial processes; however, gaining photocontrol over chain growth would expand the utility of these methods and facilitate the design of novel complex architectures. We report herein a cationic polymerization regulated by visible light. This polymerization proceeds under mild conditions: a combination of a metal-free photocatalyst, a chain-transfer agent, and light irradiation enables the synthesis of various poly(vinyl ether)s with good control over molecular weight and dispersity as well as excellent chain-end fidelity. Significantly, photoreversible cation formation in this system enables efficient control over polymer chain growth with light.

12.
ACS Macro Lett ; 5(7): 796-800, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-35614766

ABSTRACT

Varying molecular weight distributions (MWDs) have the potential to precisely tune polymer properties, but this approach remains relatively unexplored owing to a lack of synthetic methods that provide control over the exact makeup of a distribution. Herein, we report a simple and highly efficient strategy for addressing this challenge through temporal regulation of initiation in the anionic polymerization of styrene. This method yields unprecedented control over the shape of the polymer MWD and facilitates the synthesis of diblock copolymers with controlled MWD compositions. Importantly, we show that the MWD symmetry has a marked influence on the stiffness of poly(styrene-block-isoprene) copolymers, which demonstrates that varying MWD shape is an effective method for altering polymer properties.

13.
Inorg Chem ; 53(11): 5663-73, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24835282

ABSTRACT

The five manganese-containing, Keggin-based tungstosilicates [Mn(II)3(OH)3(H2O)3(A-α-SiW9O34)](7-) (1), [Mn(III)3(OH)3(H2O)3(A-α-SiW9O34)](4-) (2), [Mn(III)3(OH)3(H2O)3(A-ß-SiW9O34)](4-) (3), [Mn(III)3Mn(IV)O3(CH3COO)3(A-α-SiW9O34)](6-) (4), and [Mn(III)3Mn(IV)O3(CH3COO)3(A-ß-SiW9O34)](6-) (5) were synthesized in aqueous medium by interaction of [A-α-SiW9O34](10-) or [A-ß-SiW9O34H](9-) with either MnCl2 (1) or [Mn(III)8Mn(IV)4O12(CH3COO)16(H2O)4] (2-5) under carefully adjusted reaction conditions. The obtained salts of these polyanions were analyzed in the solid state by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric analysis. The salts of polyanions 1, 2, and 4 were further characterized in the solid state by magnetic studies, as well as in solution by electrochemistry.


Subject(s)
Manganese/chemistry , Silicates/chemical synthesis , Tungsten Compounds/chemical synthesis , Models, Molecular , Molecular Structure , Silicates/chemistry , Tungsten Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...