Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38867885

ABSTRACT

Simultaneous rheology and conversion measurements of neat and composite epoxy resins reveal that conventional models neither accurately nor fully describe the relationship between rheology and conversion. We find that models predicting thermoset conversion based on mixing rules of rheological properties are quantitatively inaccurate and do not account for chemical gelation. Models based on percolation theory and the divergence of the viscosity at the gel point are more accurate but only valid before the gel point. Here, we propose the use of the generalized effective medium (GEM) model, which incorporates the divergence of rheological properties on both sides of the critical gel point. We show that the GEM model works well for both neat resins and filled systems, and the resulting parameters estimate the gel point and scaling behavior on either side of the sol-gel transition.

2.
Science ; 383(6682): 545-551, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38300995

ABSTRACT

Pluripotency, which is defined as a system not fixed as to its developmental potentialities, is typically associated with biology and stem cells. Inspired by this concept, we report synthetic polymers that act as a single "pluripotent" feedstock and can be differentiated into a range of materials that exhibit different mechanical properties, from hard and brittle to soft and extensible. To achieve this, we have exploited dynamic covalent networks that contain labile, dynamic thia-Michael bonds, whose extent of bonding can be thermally modulated and retained through tempering, akin to the process used in metallurgy. In addition, we show that the shape memory behavior of these materials can be tailored through tempering and that these materials can be patterned to spatially control mechanical properties.

3.
ACS Macro Lett ; : 174-180, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38251912

ABSTRACT

A suite of phase separated dynamic covalent networks based on highly tunable dynamic benzalcyanoacetate (BCA) thia-Michael acceptors are investigated. In situ kinetic studies on small molecule model systems are used in conjunction with macroscopic characterization of phase stability and stress relaxation to understand how the molecular dynamics relate to relaxation modes. Electronic modification of the BCA unit strongly impacts the exchange dynamics (particularly the rate of dissociation) and the overall equilibrium constant (Keq) of the system, with electron-withdrawing groups leading to decreased dissociation rate and increased Keq. Critically, below a chemistry-defined temperature cutoff (related to the stability of the hard phase domains), the stress relaxation behavior of these phase separated materials is dominated by the molecular exchange dynamics, allowing for networks with a tailored thermomechanical response.

4.
Addit Manuf ; 712023 Jun 05.
Article in English | MEDLINE | ID: mdl-37427308

ABSTRACT

Thermoset composites are excellent candidates for material extrusion because they shear thin during extrusion but retain their shape once deposited via a yield stress. However, thermal post-curing is often required to solidify these materials, which can destabilize printed parts. Elevated temperatures can decrease the rheological properties responsible for stabilizing the printed structure before crosslinking solidifies the material. These properties, namely the storage modulus and yield stress, must therefore be characterized as a function of temperature and extent of reaction for various filler loadings. This work utilizes rheo-Raman spectroscopy to measure the storage modulus and dynamic yield stress as a function of temperature and conversion in epoxy-amine resins with fumed silica mass fractions up to 10 %. Both rheological properties are sensitive to conversion and particle loading, but only the dynamic yield stress is reduced by elevated temperatures early in the cure. Notably, the dynamic yield stress increases with conversion well before the chemical gel point. These findings motivate a two-step cure protocol that starts at a low temperature to mitigate the drop in dynamic yield stress, then ramps up to a high temperature when the dynamic yield stress is no longer at risk of decreasing to rapidly drive conversion to near completion. The results suggests that structural stability can be improved without resorting to increasing filler content, which limits control over the final properties, laying the groundwork for future studies to evaluate the stability improvements provided by the multi-step curing schedules.

5.
Bioengineering (Basel) ; 10(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37237587

ABSTRACT

Epithelial cell function is modulated by mechanical forces imparted by the extracellular environment. The transmission of forces onto the cytoskeleton by modalities such as mechanical stress and matrix stiffness is necessary to address by the development of new experimental models that permit finely tuned cell mechanical challenges. Herein, we developed an epithelial tissue culture model, named the 3D Oral Epi-mucosa platform, to investigate the role mechanical cues in the epithelial barrier. In this platform, low-level mechanical stress (0.1 kPa) is applied to oral keratinocytes, which lie on 3D fibrous collagen (Col) gels whose stiffness is modulated by different concentrations or the addition of other factors such as fibronectin (FN). Our results show that cells lying on intermediate Col (3 mg/mL; stiffness = 30 Pa) demonstrated lower epithelial leakiness compared with soft Col (1.5 mg/mL; stiffness = 10 Pa) and stiff Col (6 mg/mL; stiffness = 120 Pa) gels, indicating that stiffness modulates barrier function. In addition, the presence of FN reversed the barrier integrity by inhibiting the interepithelial interaction via E-cadherin and Zonula occludens-1. Overall, the 3D Oral Epi-mucosa platform, as a new in vitro system, will be utilized to identify new mechanisms and develop future targets involved in mucosal diseases.

6.
J Phys Chem B ; 127(20): 4595-4601, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37192016

ABSTRACT

Spontaneous room-temperature crystallization of 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) was observed upon removal of trace water. Sample purity was confirmed using analytical nuclear magnetic resonance spectroscopy to ensure that trace water or other contaminants did not produce this observation. Raman spectroscopy and simultaneous quartz crystal microbalance/infrared spectroscopy measurements were used to study molecular reorganization during crystallization and decrystallization using trace water in the form of atmospheric moisture. These experimental results were supplemented with density functional theory calculations that indicate imidazolium cation ring stacking and side chain clustering with an exclusive arrangement of the acetate anion in the cation ring plane upon water removal. Crystal structure formation was confirmed using two-dimensional wide-angle X-ray scattering. This natural crystallization is attributed to the removal of trace water over extended periods of time and calls attention to the molecular-level role of water in the structure of hygroscopic ionic liquid systems.

7.
Macromolecules ; 56(23)2023.
Article in English | MEDLINE | ID: mdl-38841360

ABSTRACT

To improve the circularity and performance of polyolefin materials, recent innovations have enabled the synthesis of polyolefins with new structural features such as cleavable breakpoints, functional chain ends, and unique comonomers. As new polyolefin structures become synthetically accessible, fundamental understanding of the effects of structural features on polymer (re)processing and mechanical performance is increasingly important. While bulk material properties are readily measured through conventional thermal or mechanical techniques, selective measurement of local material properties near structural defects is a major characterization challenge. Here, we synthesized a series of polyethylenes with selectively deuterated segments using a polyhomologation approach and employed vibrational spectroscopy to evaluate crystallization and melting of chain segments near features of interest (e.g., end groups, chain centers, and mid-chain structural defects). Chain-end functionality and defects were observed to strongly influence crystallinity of adjacent deuterated chain segments. Additionally, chain-end crystallinity was observed to have different molar mass dependence than mid-chain crystallinity. The synthesis and spectroscopy techniques demonstrated here can be applied to range of previously inaccessible deuterated polyethylene structures to provide direct insight into local crystallization behavior.

8.
Mar Pollut Bull ; 181: 113894, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35785722

ABSTRACT

Raman spectroscopy is a powerful non-destructive technique for the identification and characterization of plastics, but a major shortcoming of this technique is that environmental weathering, dyes, and additives in the material can generate a strong fluorescence background that overwhelms the Raman scattering. Here, we demonstrate that time-gated Raman spectroscopy can be used to successfully reduce the fluorescence signal and measure Raman spectra of recovered plastics. Time-gating removes a significant amount of background signal from the Raman spectra such that the polymers and color additives can be identified using similar measurement times compared to continuous-wave Raman spectroscopy. Examples of this are shown for a small subset of samples recovered from Hawaiian marine environments and a nonweathered commercial plastic. Time-gated Raman spectroscopy can also be used to characterize samples that are black in color due to carbon-based additives like graphite, which can be challenging to characterize via other common vibrational spectroscopic techniques.


Subject(s)
Plastics , Spectrum Analysis, Raman , Hawaii , Polymers , Spectrum Analysis, Raman/methods
9.
J Funct Biomater ; 13(2)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35466216

ABSTRACT

Orthopedic and craniofacial surgical procedures require the reconstruction of bone defects caused by trauma, diseases, and tumor resection. Successful bone restoration entails the development and use of bone grafts with structural, functional, and biological features similar to native tissues. Herein, we developed three-dimensional (3D) printed fine-tuned hydroxyapatite (HA) biomimetic bone structures, which can be applied as grafts, by using calcium phosphate cement (CPC) bioink, which is composed of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA), and a liquid [Polyvinyl butyral (PVB) dissolved in ethanol (EtOH)]. The ink was ejected through a high-resolution syringe nozzle (210 µm) at room temperature into three different concentrations (0.01, 0.1, and 0.5) mol/L of the aqueous sodium phosphate dibasic (Na2HPO4) bath that serves as a hardening accelerator for HA formation. Raman spectrometer, X-ray diffraction (XRD), and scanning electron microscopy (SEM) demonstrated the real-time HA formation in (0.01, 0.1, and 0.5) mol/L Na2HPO4 baths. Under those conditions, HA was formed at different amounts, which tuned the scaffolds' mechanical properties, porosity, and osteoclast activity. Overall, this method may pave the way to engineer 3D bone scaffolds with controlled HA composition and pre-defined properties, which will enhance graft-host integration in various anatomic locations.

10.
Macromolecules ; 55(24)2022.
Article in English | MEDLINE | ID: mdl-36969109

ABSTRACT

Motivated by the problem of brittle mechanical behavior in recycled blends of high density polyethylene (HDPE) and isotactic polypropylene (iPP), we employ optical microscopy, rheo-Raman, and differential scanning calorimetry (DSC) to measure the composition dependence of their crystallization kinetics. Raman spectra are analyzed via multivariate curve resolution with alternating least-squares (MCR-ALS) to provide component crystallization values. We find that iPP crystallization behavior varies strongly with blend composition. Optical microscopy shows that three crystallization kinetic regimes correspond to three underlying two-phase morphologies: HDPE droplets in iPP, the inverse, and cocontinuous structures. In the HDPE droplet regime, iPP crystallization temperature decreases sharply with increasing HDPE composition. For cocontinuous morphologies, iPP crystallization is delayed, but the onset temperature changes little with the exact blend composition. In the iPP droplet regime, the two components crystallize nearly concurrently. Rheological measurements are consistent with these observations. DSC indicates that the enthalpy of crystallization of the blends is less than the weighted values of the individual components, providing a possible clue for the decreased iPP crystallization temperatures.

11.
Polym Cryst ; 4(2)2021.
Article in English | MEDLINE | ID: mdl-34124594

ABSTRACT

The rheology of polymer crystallization is an old problem that often defies explanation due to the complex interrelationships between crystallization and flow properties. Although separate measurements of rheology and crystallinity can give some information on their relationship, it is only through simultaneous measurements that ideas on the rheology of polymer crystallization can be tested and developed. This Perspective details recent experimental developments in simultaneous crystallinity and rheology measurements as well as continuum modeling efforts for the case of quiescent and isothermal crystallization. Experimental results reveal that the rheology is dominated initially by growth of individual spherulites that evolve into spherulitic superstructures that eventually span the measurement geometry. A generalized effective medium model based on this concept of percolation can explain both the growth of the viscoelastic modulus during crystallization and the changes in the relaxation spectrum of the crystallizing polymer, including a critical gel response at percolation. The success of the combined measurement techniques and percolation concepts motivate research to extend the semicrystalline polymer materials space where these methods are applied as well as further develop novel techniques to gain additional insight into the evolution of structure and relaxation dynamics during crystallization.

12.
MRS Commun ; 11(2): 157-167, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-38482539

ABSTRACT

Polymer chain orientation is crucial to understanding the polymer dynamics at interfaces formed during thermoplastic material extrusion additive manufacturing. The flow field and rapid cooling produced during material extrusion can result in chains which are oriented and stretched, which has implications for interdiffusion and crystallization. Polarized Raman spectroscopy offers a non-destructive and surface sensitive method to quantify chain orientation. To study orientation and alignment of chains in 3D printed polycarbonate filaments, we used a combination of polarized Raman spectroscopy and birefringence (Δn) measurements. By changing the orientation of the sample with respect to polarization of incident radiation, we probe changes in the ratio between orientation-dependent vibration modes and orientation-independent modes. We used principal component analysis (PCA) and partial least squares (PLS) regression to develop correlations for birefringence and Raman measurements in samples that were pulled at different draw ratios (DRs). PCA was used to differentiate between orientation-dependent and orientation-independent modes, while PLS regression was used to calculate birefringence from Raman measurements of 3D printed samples. Birefringence measurements were compared to the polycarbonate intrinsic birefringence of 0.2, to estimate the degree of orientation. We find that measured values of birefringence underestimate orientation compared to Raman measurements.

13.
J Rheol (N Y N Y) ; 62(1): 343-356, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29628538

ABSTRACT

The crystallization of a polymer melt is characterized by dramatic structural and mechanical changes that significantly impact the processing conditions used to generate industrially-relevant products. Relationships between crystallinity and rheology are necessary to simulate and monitor the effect of processing conditions on the properties of the final product. However, separate measurements of crystallinity and rheology are difficult to correlate due to differences in sample history, geometry, and temperature. Recently, we have developed a rheo-Raman microscope for simultaneous rheology, Raman spectroscopy, and polarized reflection-mode optical measurements of soft materials, which allows for quantitative crystallinity measurements through features in the Raman spectrum. In this work, we apply this technique to monitor the isothermal crystallization of polycaprolactone to probe the relationship between structure, crystallinity, and rheology. Both crystallinity and the shear modulus vary over comparable timescales, but the birefringence increases much earlier in the crystallization process. We directly plot rheological parameters as a function of crystallinity to probe a range of suspension-based and empirical models relating the complex modulus to crystallinity, and we find that the previously developed models cannot describe the crystallinity-modulus relationship over the crystallization process. By developing a suspension-based model we can fit the complex modulus over the crystallization range. The crystallization process is characterized by a critical percolation fraction and a single scaling exponent.

14.
Article in English | MEDLINE | ID: mdl-31274931

ABSTRACT

The development of biocompatible polymer nano-composites that enhance mechanical properties while maintaining thermoplastic processability is a longstanding goal in sustainable materials. When the matrix is semi-crystalline, the nanoparticles may induce significant changes to crystallization kinetics and morphology due to their ability to act as nucleating agents. To fully model this behavior in a process line, an understanding of the relationship between crystallinity and modulus is required. Here, we introduce a scalable model system consisting of surface-compatibilized cellulose nanocrystals (CNC) dispersed into poly(ε-caprolactone) (PCL) and study the effects of nanoparticle concentration on isothermal crystallization kinetics. The dispersion is accomplished by exchange of the Na+ of sulfated cellulose nanocrystals by tetra-butyl ammonium cations (Bu4N+) followed by melt mixing via twin-screw extrusion. Crystallization kinetics are measured through the recently developed rheo-Raman instrument which extracts the relationship between the growth of the transient mechanical modulus and that of crystallinity. With extrusion and increasing CNC content, we find the expected enhancement of crystallization rate, but we moreover find a significant change in the relative kinetics of increase in modulus versus crystallinity. We analyze this via generalized effective medium theory which allows computation of a critical percolation threshold ξ c and discuss the results in terms of a change in nucleation density and a change in the anisotropy of crystallization.

15.
Article in English | MEDLINE | ID: mdl-30983636

ABSTRACT

Material extrusion additive manufacturing processes force molten polymer through a printer nozzle at high (> 100 s-1) wall shear rates prior to cooling and crystallization. These high shear rates can lead to flow-induced crystallization in common polymer processing techniques, but the magnitude and importance of this effect is unknown for additive manufacturing. A significant barrier to understanding this process is the lack of in situ measurement techniques to quantify crystallinity after polymer filament extrusion. To address this issue, we use a combination of infrared thermography and Raman spectroscopy to measure the temperature and percent crystallinity of extruded polycaprolactone during additive manufacturing. We quantify crystallinity as a function of time for the nozzle temperatures and filament feed rates accessible to the apparatus. Crystallization is shown to occur faster at higher shear rates and lower nozzle temperatures, which shows that processing conditions can have a dramatic effect on crystallization kinetics in additive manufacturing.

16.
Polymer (Guildf) ; 117: 1-10, 2017 May.
Article in English | MEDLINE | ID: mdl-28824207

ABSTRACT

Raman spectroscopy is a popular method for non-invasive analysis of biomaterials containing polycaprolactone in applications such as tissue engineering and drug delivery. However there remain fundamental challenges in interpretation of such spectra in the context of existing dielectric spectroscopy and differential scanning calorimetry results in both the melt and semi-crystalline states. In this work, we develop a thermodynamically informed analysis method which utilizes basis spectra - ideal spectra of the polymer chain conformers comprising the measured Raman spectrum. In polycaprolactone we identify three basis spectra in the carbonyl region; measurement of their temperature dependence shows that one is linearly proportional to crystallinity, a second correlates with dipole-dipole interactions that are observed in dielectric spectroscopy and a third which correlates with amorphous chain behavior. For other spectral regions, e.g. C-COO stretch, a comparison of the basis spectra to those from density functional theory calculations in the all-trans configuration allows us to indicate whether sharp spectral peaks can be attributed to single chain modes in the all-trans state or to crystalline order. Our analysis method is general and should provide important insights to other polymeric materials.

17.
Rev Sci Instrum ; 87(10): 105105, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27802720

ABSTRACT

The design and performance of an instrument capable of simultaneous Raman spectroscopy, rheology, and optical microscopy are described. The instrument couples a Raman spectrometer and optical microscope to a rotational rheometer through an optically transparent base, and the resulting simultaneous measurements are particularly advantageous in situations where flow properties vary due to either chemical or conformational changes in molecular structure, such as in crystallization, melting, gelation, or curing processes. Instrument performance is demonstrated on two material systems that show thermal transitions. First, we perform steady state rotational tests, Raman spectroscopy, and polarized reflection microscopy during a melting transition in a cosmetic emulsion. Second, we perform small amplitude oscillatory shear measurements along with Raman spectroscopy and polarized reflection microscopy during crystallization of a high density polyethylene. The instrument can be applied to study structure-property relationships in a variety of soft materials including thermoset resins, liquid crystalline materials, colloidal suspensions undergoing sol-gel processes, and biomacromolecules. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.


Subject(s)
Microscopy , Polyethylene/chemistry , Rheology , Spectrum Analysis, Raman , Microscopy/instrumentation , Microscopy/methods , Rheology/instrumentation , Rheology/methods , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods
18.
Soft Matter ; 12(33): 7038-55, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27478885

ABSTRACT

The dilatational properties of insoluble monolayers are important for understanding the mechanics of biological systems and consumer products, but isolating the dilatational response of an interface is challenging due to the difficulties in separating dilatation from shear and other deformation modes. Oscillations of a microscale bubble radius are useful for generating purely dilatational flows, but the current deposition methods for insoluble layers onto fluid interfaces are not easily scaled down. In this paper, we describe a miscible solvent exchange procedure for generating insoluble layers at an air-water interface pinned at the tip of a capillary tens of micrometers in diameter. We show that the amount of surfactant adsorbed at the interface can be controlled by the initial concentration dissolved in isopropanol (the starting solvent) and the volumetric flow rate of solvent exchange. Surface pressure-area isotherms and dilatational moduli are measured concurrently for three insoluble surfactants: palmitic acid (PA), dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC). The isotherms measured on the microscale interface compare well with previous experiments performed on a Langmuir trough. However, the magnitudes of the dilatational moduli differ from those measured on either Langmuir trough or pendant drop apparatuses. Several possible reasons for the observed differences are discussed. A comparison of the dilatational modulus with the Gibbs elasticity is used to determine the presence of dilatational extra stresses at the interface. The isotherm and dilatational modulus of the insoluble component of the industrial surfactant Tween 80 are measured using this approach. The methods developed here also open the possibility for future study of the important role of finite size effects on microstructure formation and the resulting interfacial mechanics.

19.
Soft Matter ; 12(22): 5002-10, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27174157

ABSTRACT

We perform Raman spectroscopic measurements on normal alkanes (CnH2n+2) to quantify the n dependence of the conformational disorder that occurs below the melt temperature. We employ a three-state spectral analysis method originally developed for semi-crystalline polyethylene that posits crystalline, amorphous, and non-crystalline consecutive trans (NCCT) conformations to extract their respective mass fractions. For the alkanes studied that melt via a rotator phase (21 ≤n≤ 37), we find that conformational disorder can be quantified by the loss of NCCT mass fraction, which systematically decreases with increasing chain length. For those that melt directly via the crystal phase (n≥ 40), we observe NCCT conformational mass fractions that are independent of chain length but whose disordered mass fraction increases with length. These complement prior IR measurements which measure disorder via gauche conformations, but have not been able to measure the mass fraction of this disorder as a function of n. An interesting feature of the three-state analysis when applied to alkanes is that the measured fraction of disordered chain conformations in the rotator phase of (10 to 30)% greatly exceeds the mass fraction of gauche bonds (1 to 7)% as measured from IR; we reconcile this difference through DFT calculations.

20.
J Raman Spectrosc ; 47(11): 1375-1384, 2016 Nov.
Article in English | MEDLINE | ID: mdl-28070140

ABSTRACT

We use moving-window two-dimensional correlation spectroscopy (MW-2DCOS) for phase-specific Raman analysis of the n-alkane (C21H44) during melting from the crystalline solid phase to the intermediate rotator phase and to the amorphous molten phase. In MW-2DCOS, individual peak-to-peak correlation analysis within a small subset of spectra provides both temperature-resolved and spectrally disentangled Raman assignments conducive to understanding phase-specific molecular interactions and chain configurations. We demonstrate that autocorrelation MW-2DCOS can determine the phase transition temperatures with a higher resolving power than commonly-used analysis methods including individual peak intensity analysis or principal component analysis. Besides the enhanced temperature resolving power, we demonstrate that asynchronous 2DCOS near the orthorhombic-to-rotator transition temperature can spectrally resolve the two overlapping peaks embedded in the Raman CH2 twisting band in the orthorhombic phase, which had been only predicted but not observed due to thermal broadening near the melting temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...