Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 37(3): 931-5, 1981 Mar.
Article in English | MEDLINE | ID: mdl-7014928

ABSTRACT

At high multiplication of infection, a substantial fraction of restricting cells (P1 lysogens) could be productively infected by unmodified coliphage T1 (T1.0) provided that protein synthesis was uninhibited during the first 5 min of infection. Successful infection under restricting conditions was accompanied by more genetic recombination than was seen under nonrestricting host, the recombination frequency declined for markers on T1.0 genomes; no effect was seen on recombination between markers on modified (T1.P) genomes. This suggested that recombination between unmodified genomes may be essential for their survival under conditions of host restriction. In a restricting host, genetic markers on T1.0 could recombine with T1.P even when the rescuing phage was added 6 min after T1.0 infection. However, even marker rescue recombination was diminished when protein synthesis was inhibited during early infection. Since DNA restriction is an early event, protein synthesis may be required soon after infection of a restricting host by T1.0 in order to preserve restriction-damaged DNA in a form that can participate in recombination. Experiments are also described that rule out some possibilities for the role of such a protein(s).


Subject(s)
Lysogeny , T-Phages/physiology , Viral Proteins/biosynthesis , Chloramphenicol/pharmacology , Escherichia coli/physiology , Genes, Viral , Genetic Markers , Recombination, Genetic , T-Phages/genetics
2.
J Virol ; 31(1): 17-24, 1979 Jul.
Article in English | MEDLINE | ID: mdl-387975

ABSTRACT

When unmodified phage T1 infects restricting host cells at high multiplicities of infection, there is an increase in recombination frequency in all regions of the T1 map compared to the level of recombination in standard crosses when short distances are examined. The enhancement of recombination frequency is not uniform for all regions but is greatest for markers near the center of the map and not so great for markers near the ends. Crosses between markers at the extremities of the map show that there is no increase in recombination frequency under restriction conditions. An examination of phage T1 heterozygotes suggests that an increase of ends created by the process of P1 restriction increases recombination. When T1 crosses are done in the absence of host restriction, recombination defects in the host have no effect on phage recombination and we conclude that phage T1 codes for its own recombination genes. Host recombination functions are also dispensable for the recombination occurring during infection of restricting host cells by unmodified phage at high multiplicities of infection.


Subject(s)
Escherichia coli/genetics , Genes, Viral , Recombination, Genetic , T-Phages/genetics , Crosses, Genetic , Lysogeny , T-Phages/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...