Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Type of study
Language
Publication year range
2.
J Am Chem Soc ; 123(10): 2255-64, 2001 Mar 14.
Article in English | MEDLINE | ID: mdl-11456872

ABSTRACT

The reactivity of triplet 16-electron organometallic species has been studied in room-temperature solution using femtosecond UV pump IR probe spectroscopy. Specifically, the Si-H bond-activation reaction of photogenerated triplet Fe(CO)(4) and triplet CpCo(CO) with triethylsilane has been characterized and compared to the known singlet species CpRh(CO). The intermediates observed were studied using density functional theory (DFT) as well as ab initio quantum chemical calculations. The triplet organometallics have a greater overall reactivity than singlet species due to a change in the Si-H activation mechanism, which is due to the fact that triplet intermediates coordinate weakly at best with the ethyl groups of triethylsilane. Consequently, the triplet species do not become trapped in alkyl-solvated intermediate states. The experimental results are compared to the theoretical calculations, which qualitatively reproduce the trends in the data.

3.
J Am Chem Soc ; 123(18): 4204-10, 2001 May 09.
Article in English | MEDLINE | ID: mdl-11457185

ABSTRACT

The ultrafast reaction dynamics following 295-nm photodissociation of Re2CO10 were studied experimentally with 300-fs time resolution in the reactive, strongly coordinating CCl4 solution and in the inert, weakly coordinating hexane solution. Density-functional theoretical (DFT) and ab initio calculations were used to further characterize the transient intermediates seen in the experiments. It was found that the quantum yield of the Re-Re bond dissociation is governed by geminate recombination on two time scales in CCl4, approximately 50 and approximately 500 ps. The recombination dynamics are discussed in terms of solvent caging in which the geminate Re(CO)5 pair has a low probability to escape the first solvent shell in the first few picoseconds after femtosecond photolysis. The other photofragmentation channel resulted in the equatorially solvated dirhenium nonacarbonyl eq-Re2(CO)9(solvent). Theoretical calculations indicated that a structural reorganization energy cost on the order of 6-7 kcal/mol might be required for the unsolvated nonacarbonyl to coordinate to a solvent molecule. These results suggest that for Re(CO)5 the solvent can be treated as a viscous continuum, whereas for the Re2(CO)9 the solvent is best described in molecular terms.

SELECTION OF CITATIONS
SEARCH DETAIL