Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Sci Polym Ed ; 35(10): 1523-1536, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574261

ABSTRACT

The interaction between the integrin and collagen is important in cell adhesion and signaling. Collagen, as the main component of extracellular matrix, is a base material for tissue engineering constructs. In tissue engineering, the collagen structure and molecule state may be altered to varying degrees in the process of processing and utilizing, thereby affecting its biological properties. In this work, the impact of changes in collagen structure and molecular state on the binding properties of collagen to integrin α2ß1 and integrin specific cell adhesion were explored. The results showed that the molecular structure of collagen is destroyed under the influence of heating, freeze-grinding and irradiation, the triple helix integrity is reduced and molecular breaking degree is increased. The binding ability of collagen to integrin α2ß1 is increased with the increase of triple helix integrity and decays exponentially with the increase of molecular breaking degree. The collagen molecular state can also influences the binding ability of collagen to cellular receptor. The collagen fibrils binding to integrin α2ß1 and HT1080 cells is stronger than to collagen monomolecule. Meanwhile, the hybrid fibril exhibits a different cellular receptor binding performance from corresponding single species collagen fibril. These findings provide ideas for the design and development of new collagen-based biomaterials and tissue engineering research.


Subject(s)
Cell Adhesion , Collagen , Integrin alpha2beta1 , Protein Binding , Integrin alpha2beta1/metabolism , Integrin alpha2beta1/chemistry , Humans , Collagen/chemistry , Collagen/metabolism , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Animals , Tissue Engineering/methods , Cell Line, Tumor
2.
Int J Biol Macromol ; 257(Pt 1): 127864, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37939762

ABSTRACT

Customized control of the biological response between the material matrix and cells is a crucial aspect in the development of the next generation of collagen materials. This study aims to investigate the effects of ultrahigh pressure treatment on the interaction between collagen and cells by subjecting bovine tendon collagen to different intensities of ultrahigh pressure field. The results indicate that ultrahigh pressure treatment alters the spatial folding of collagen, causing distortion of its triple helical conformation and exposing more free amino groups and hydrophobic regions. As a result, collagen's cell adhesion capability and ability to promote cell migration are significantly enhanced. Optimal cell adhesion and migration capabilities are observed in collagen samples treated at 500 MPa for 15 min. However, further increasing the intensity of the ultrahigh pressure treatment leads to severe damage to the triple-helical structure of collagen, along with re-aggregation of free amino groups and hydrophobic moieties, thereby reducing collagen's cell adhesion capability and ability to promote cell migration. Therefore, ultrahigh pressure treatment offers a promising method to effectively regulate collagen-cell adhesion and promote cell migration without the need for external components. This provides a potential means for the customized enhancement of collagen-based material interfaces.


Subject(s)
Collagen , Animals , Cattle , Cell Adhesion , Collagen/chemistry , Cell Movement
3.
Molecules ; 28(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38005397

ABSTRACT

Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration and function recovery. Herein, a three-dimensional (3D) sponge-filled nanofibrous NGC (sf@NGC) resembling the structure of native peripheral nerves was developed. The conduit was fabricated by electrospinning a poly(L-lactide-co-glycolide) (PLGA) membrane, whereas the intraluminal filler was obtained by freeze-drying a collagen-based matrix (ColM) resembling the extracellular matrix. The effects of the electrospinning process and of the composition of ColM on the physicochemical performance of sf@NGC were investigated in detail. Furthermore, the biocompatibility of the PLGA sheath and ColM were evaluated. The continuous and homogeneous PLGA nanofiber membrane had high porosity and tensile strength. ColM was shown to exhibit an ECM-like architecture characterized by a multistage pore structure and a high porosity level of over 70%. The PLGA sheath and ColM were shown to possess stagewise degradability and good biocompatibility. In conclusion, sf@NGC may have a favorable potential for the treatment of nerve reconstruction.


Subject(s)
Guided Tissue Regeneration , Nanofibers , Sciatic Nerve , Nanofibers/chemistry , Guided Tissue Regeneration/methods , Collagen/pharmacology , Tissue Scaffolds/chemistry , Nerve Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...